首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In 1999–2002, we continued our photometric and spectroscopic observations of FG Sge. This star has been in a new R CrB photometric phase since 1992. We constructed the BV RI light curves and studied the behavior of the color indices as a function of the fading amplitude. As previously, all of the three deep minima observed during this period were found to be blue on the descent; this was interpreted as the result of strong stellar light scattering in dust clouds formed on the line of sight. We analyzed the wavelength dependence of extinction in the circumstellar shell outside fadings, which was similar to Whitford's standard reddening law. Low-resolution spectroscopic observations allowed us to study the changes in the intensities of Swan bands and the Na I D doublet during deep and shallow (up to 1m) fadings. We confirmed the reversal of the spectrum of the extended stellar envelope on the descending branches of deep minima.  相似文献   

2.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

3.
Observations of the circumstellar maser emission from the long-period variable star Y Cas in the 1.35-cm water-vapor line are presented. The observations were performed with the RT-22 radio telescope at the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev Physical Institute, Russian Academy of Sciences) in the period 1982–2005. The variations in the integrated flux Fint in the H2O line correlate with the visual light curve of the star. The phase delay Δ? between the Fint variations and the light curve is 0.2–0.4P (P is the period of the star). The H2O maser Y Cas belongs to transient sources: peaks of high maser activity alternate with intervals of a low emission level when the H2O-line flux does not exceed (0.1–0.5) × 10?20 W m?2. A “superperiod” of ~5.7 yr was found in the occurrence of activity peaks. A particularly strong maximum of maser radio emission took place at the end of 1997, when the flux Fint reached 15.6 × 10?20 W m?2. A model for the H2O maser variability in Y Cas is discussed. The variability is caused by a periodic action of shock waves driven by stellar pulsations. The H2O maser flares may be associated with short-lived episodes of enhanced mass loss by the star or with the propagation of a particularly strong shock wave when a planet orbiting the star passes through its periastron.  相似文献   

4.
We present and discuss the results of our long-term JHKLM photometry for two RV Tau stars (R Sge and RV Tau) and the yellow supergiant V1027 Cyg, a candidate for protoplanetary nebulae. The amplitude of the infrared brightness variations in R Sge and RV Tau over fourteen years of observations was 0 . m 9?1 m ; the infrared brightness variations in V1027 Cyg over eighteen years did not exceed 0 . m 25. The infrared brightness and color of R Sge fluctuated about their gradually changing mean values; the infrared brightness variations agree with a period of 70.77 days. The periodic J brightness and J-H color variations in R Sge can be explained by temperature pulsations with ΔT ≤ 200 K and radial pulsations with [ΔR/R] ≤ 0.2. From 1995 to 2008, the mean J brightness of RV Tau increased, while its mean J-H color index decreased; the variations in the mean J brightness can be associated mainly with stellar temperature variations; a periodic component with P = 78.73 days is observed in the infrared brightness and color fluctuations. The variations in the mean J brightness and J-H color index of the supergiant V1027 Cyg over eighteen years of observations did not exceed a few hundredths of a magnitude; both temperature and radial pulsations may be present in the observed J brightness variations. The most probable period of the infrared brightness fluctuations in V1027 Cyg is 237 ± 2 days. The dust shell of R Sge may consist of two layers with grain temperatures of ~1000 and ~700 K; the optical depth at 1.25 µm is ~0.02 and ~0.24, respectively. The grain temperatures in the circumstellar dust shells of the supergiants RV Tau and V1027 Cyg are ~600 K (RV Tau) and ~700 K (V1027 Cyg). Their optical depths at 1.25 µm are ~0.24 (RV Tau) and ~0.008 (V1027 Cyg).  相似文献   

5.
We discuss the infrared (IR) (1.25–5 µm) photometry of eight planetary nebulae performed in 1999–2006. For all of the nebulae under study, we have firmly established IR brightness and color variations on time scales shorter than one year and up to 6–8 years. The greatest IR brightness variations were observed in IC 2149, IC 4997, and NGC 7662. Their J magnitudes varied within 0 . m 2–0 . m 25. In the remaining objects, the J magnitude variations did not exceed 0 . m 15. All of the planetary nebulae under study exhibited IR color variations. Based on the IR photometry, we have classified the central regions of the planetary nebula NGC 1514 and of the northern part of NGC 7635 seen through a 12″ aperture as a B(3–7) main-sequence star (NGC 1514) and a ~O9.5 upper-main-sequence star (NGC 7635). The nebulae IC 4997 and NGC 7027 exhibited an excess emission (with respect to the emission from a hot source) at λ > 2.5 µm.  相似文献   

6.
Repeated spectroscopic observations made with the 6-m telescope of SAO RAS yielded new data on the radial-velocity variability of the anomalous yellow supergiant QY Sge. The strongest and most peculiar feature in its spectrum is the complex profile of NaI D lines, which contains a narrow and a very wide emission components. The wide emission component can be seen to extend from ?170 to +120 km/s, and at its central part it is cut by an absorption feature, which, in turn, is split into two subcomponents by a narrow (16 km/s at r=2.5) emission peak. An analysis of all the Vr values leads us to adopt for the star a systemic velocity of Vr=?21.1 km/s, which corresponds to the position of the narrow emission component of NaI. The locations of emission-line features of NaI D lines are invariable, which point to their formation in regions that are external to the supergiant’s photosphere. Differential line shifts of about 10 km/s are revealed. Emission in the Hα line is weaker than in NaI D lines, it fills the photospheric absorption almost completely. The absorption lines in the spectrum of QY Sge have a substantial width of FWHM ≈ 45 km/s. The method of model atmospheres is used to determine the following parameters: the effective temperature T eff =6250±150 K, surface gravity l g g=2.0±0.2, and microturbulence velocity ξ t =4.5±0.5 km/s. The chemical composition of the atmosphere differs only slightly from the solar composition: the metallicity of the star is found to be somewhat higher than the solar metallicity with an average overabundance of iron-peak elements of [Met/H]=+0.20. The star is found to be slightly overabundant in carbon and nitrogen, [C/Fe]=+0.25, [N/Fe]=+0.27. The α-process elements Mg, Si, and Ca are slightly overabundant, on the average by [α/H]=+0.12, and sulfur overabundance is higher, [S/α]=+0.29. The strong overabundance of sodium, [Na/Fe]=+0.75, is likely to be due to the dredge-up of the matter processed in the NeNa cycle. Heavy elements of the s-process are underabundant relative to the Sun. On the whole, the observed properties of QY Sge do not give grounds for including this star into the group of RCrB or RVTau-type objects.  相似文献   

7.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

8.
Photoelectric UBV observations of the central star of the planetary nebula NGC 2346 obtained during 60 nights between October 1991 and February 1992 are presented (Tables 1 and 2). Four minima have been stated and can be interpreted in terms of occulting dust clouds, probably representing dense condensations of the planetary nebula. We derived R = AV/EB—V = 4.0.  相似文献   

9.
We present the results of our UBV and JHKLM photometry for the semiregular pulsating variable V1027 Cyg, a supergiant with an infrared excess, over the period from 1997 to 2015 (UBV) and in 2009–2015 (JHKLM). Together with the new data, we analyze the photometric observations of V1027 Cyg that we have obtained and published previously. Our search for a periodicity in the UBV brightness variations has led to several periods from P = 212d to 320d in different time intervals. We have found the period P = 237d based on our infrared photometry. The variability amplitude, the lightcurve shape, and themagnitude of V1027 Cyg atmaximum light change noticeably from cycle to cycle. The deepest minimum was observed in 2011, when the amplitudes of brightness variations in the star reached the following values: ΔU = 1 . m 28, ΔB = 1 . m 10, ΔV = 1 . m 05, ΔJ = 0 . m 30, ΔH = 0 . m 35, ΔK = 0 . m 32, ΔL = 0 . m 26, and ΔM = 0 . m 10. An ambiguous correlation of the B ? V and U ? B colors with the brightness has been revealed. For example, a noticeable bluing of the star was observed during the deep 1992, 2008, and 2011 minima, while the variations with smaller amplitudes show an increase in B ? V at the photometric minima. The spectral energy distribution for V1027 Cyg from our photometry in the range 0.36 (U)–5.0 (M) μm corresponds to spectral types from G8I to K3I at different phases of the pulsation cycle. Low-resolution spectra of V1027 Cyg in the range λ4400–9200 ?A were taken during 16 nights over the period 1995–2015. At the 1995 and 2011 photometric minima the star’s spectrum exhibited molecular TiO bands whose intensity corresponded to spectral types M0–M1, while the photometric data point to a considerably earlier spectral type. We hypothesize that the TiO bands are formed in the upper layers of the extended stellar atmosphere. We have measured the equivalent widths of the strongest absorption lines, in particular, the infrared Ca II triplet in the spectrum of V1027 Cyg. The calcium triplet (Ca T) with W λ(Ca T) = 20.3 ± 1.8 ?A as a luminosity indicator for supergiants places V1027 Cyg in the region of the brightest G–K supergiants. V1027 Cyg has been identified with the infrared source IRAS 20004+2955 and is currently believed to be a candidate for post-AGB stars. The evolutionary status of the star and its difference from other post-AGB objects are discussed.  相似文献   

10.
The strongest absorption features with the lower-level excitation potentials χ low < 1 eV are found to be split in the high-resolution optical spectra of the post-AGB star V354 Lac taken in 2007–2008 with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Main parameters, T eff =5650 K, log g=0.2, ξ t =5.0 km/s, and the abundances of 22 chemical elements in the star’s atmosphere are found. The overabundance of the s-process chemical elements (Ba, La, Ce, Nd) in the star’s atmosphere is partly due to the splitting of strong lines of the ions of thesemetals. The peculiarities of the spectrum in the wavelength interval containing the LiI λ 6707 Å line can be naturally explained only by taking the overabundances of the CeII and SmII heavy-metal ions into account. The best agreement with the synthetic spectrum is achieved assuming ?(LiI)=2.0, ?(CeII)=3.2, and ?(SmII)=2.7. The velocity field both in the atmosphere and in the circumstellar envelope of V354 Lac remained stationary throughout the last 15 years of our observations.  相似文献   

11.
《New Astronomy Reviews》1999,43(6-7):415-424
FG Sagittae is one of the most important key objects for post-AGB stellar evolutionary studies. As a consequence of a final helium shell flash, this unique variable has shown real evolutionary changes on human timescales during this century. The recently observed variations in the emission lines of the surrounding old planetary nebula prove that there is no hot exciting object hidden inside the nebula, thus there is only one central star, namely FG Sge itself. Consequently, we are witnessing the rapid evolution of a single star. Turning to an R CrB type variable in the early 90s, FG Sge also solved the question of the evolutionary state of this type of stars. Some aspects of the observational history of FG Sge are reviewed in this paper and compared with predictions from model calculation results.  相似文献   

12.
We present our photoelectric observations of the binary star VV8=V471 Per over the period 1971–2007. A long-term photometric variability with a period of about 17 yr in the V and B bands has been confirmed. A systematic rise in brightness was recorded in the U band, suggesting that the gas ionization increases in the binary system. Our spectroscopic observations from 1995 to 2007 have shown that the emission line fluxes, on average, did not change compared to the data of other authors obtained in the previous decades. We have shown that the cool giant is a G5III star and is probably enriched with nucleosynthesis products from the evolved former primary component of the binary. We provide arguments for the hypothesis that the hot component in V471 Per is the massive nucleus of a young planetary nebula that rapidly evolved to a temperature of 65 000–75 000 K, while the surrounding nebula is very dense and optically thick and has not yet been entirely ionized.  相似文献   

13.
We present the results of solving the radiative transfer equation for the Stokes vector in the case of light scattering by spherical forsterite dust particles in an axisymmetric circumstellar envelope of a red giant. We have assumed that the surfaces of constant scattering-particle density are prolate or oblate spheroids, the particle density decreases with radius as N dr −2, and the dust particles at the inner boundary of the envelope are in thermal equilibrium with the stellar emission at solid-phase evaporation temperature T ev = 800 K. In the wavelength range 0.27 μm ≤ λ ≤ 1 μm, particles with radii 0.03 μm ≲ a ≲ 0.2 μm make a major contribution to the linear polarization of the stellar emission. The increase in scattering efficiency factor with decreasing wavelength λ is mainly responsible for the growth of polarization toward the short wavelengths known from observations. However, at a mean number of scatterings 1.2 ≤ N sca ≤ 1.6, the polarization ceases to grow due to depolarization effects and decreases rapidly as the wavelength decreases further. The wavelength of the polarization maximum is determined mainly by two quantities: the particle radius and the mass loss rate. The upper limits for the degree of linear polarization in the case of light scattering in circumstellar dust envelopes with the geometries of prolate and oblate spheroids are p ≈ 3 and 5%, respectively. The polarization for light scattering by enstatite particles is higher than that for light scattering by forsterite particles approximately by 0.3%. Original Russian Text ? Yu.A. Fadeyev, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 2, pp. 123–133.  相似文献   

14.
A Fabry-Perot spectrometer was used to map the H II region around the O star ξ Per in the Hβ emission line. The angular size of the region is \(9_.^ \circ 1 \times 6_.^ \circ 0\). The region-boundary contour drawn at the double background level is centered on the star. The accuracy of our emission intensity measurements is 0.2 rayleigh. The proximity of the nebula NGC 1499 has virtually no effect on the measured emission measure toward the star. The star excitation parameter derived from observations corresponds to the spectral type O7.5 III and is U(Sp)=56.0±8.4 pc cm?2; the mean electron density in the region is ne=3.1±0.4 cm?3.  相似文献   

15.
Diffraction-limited array images of the Trapezium/Ney Allen infrared nebula have been obtained at six wavelengths between 7.8 and 12.4 microns, including the 9.7 micron silicate feature. Extended emission from warm dust shows significant differences in structure around each of the four Trapezium stars. The most dramatic infrared source is associated with 1 Orionis D, where the bright mid-infrared emission is found to be a distinct crescent-shaped ridge or shell, concentric with the O star. This unambiguous relationship between a known type stellar luminosity source and a distinct circumstellar dust cloud of known distance and dimensions provides a unique opportunity to test the predictions of dust grain emission models for circumstellar infrared sources.  相似文献   

16.
A scenario is considered for the formation of a planetary system through the merging of a binary star comprised of low-mass (0.5–1 M ) stars in the stage of contracting towards the main sequence. According to our previous computations (Sirotkin and Karetnikov, 2006), under certain conditions, the destruction of the more massive component can result in the formation of a central star, an accretion disk, and an extended arm. The extended arm is fragmented to form clouds of planetary masses (<5M J). The formed disk and clouds rotate in the same direction as the central star. The clouds are in elongated orbits (e > 0.3) lying in the orbital plane of the initial binary system. To test these earlier results, we repeated computations for the same system parameters but with higher accuracy. The new computations confirmed the earlier results and gave new information about the cloud and disk structure.  相似文献   

17.
Splitting of the strongest absorption lines with a lower-level excitation potential χ low < 1 eV has been detected for the first time in the optical spectra of the post-AGB star V354 Lac obtained with a spectral resolution R = 60 000 at the 6-m BTA telescope. Analysis of the kinematics shows that the short-wavelength component of the split line originates in the star’s thick gas-dust envelope. Disregarding the splitting of strong lines when the chemical composition is calculated leads to overestimated overabundances of s-process elements (Ba, La, Ce, Nd) in the stellar atmosphere. The profiles of strong absorption lines have been found to be variable. The available radial-velocity data suggest the absence of any changes in the velocity field in the atmosphere and circumstellar envelope of V354 Lac over 15 years of its observations.  相似文献   

18.
We present the results of our infrared JHK photometry for the unusual UX Ori star V1184 Tau. Comparison with previous observations performed before the catastrophic decline in its optical brightness in 2004 (when the star faded approximately by a factor of 100) has shown the following: the star faded approximately by 2 m and 1 m in the J and H bands, respectively, while its K brightness remained almost constant. This pattern of infrared variability seems incompatible with the mechanism of variable circumstellar extinction responsible for the dramatic decline in the star’s optical brightness. However, if this mechanism is considered in the context of an accretion disk model with a puffed-up inner rim in the dust sublimation zone and with a disk wind producing an expanding gas-dust atmosphere above the disk surface, then the paradox can be resolved. In this model, the photometric activity of V1184 Tau in both visible and near-infrared spectral ranges, including the sharp brightness decline in 2004, can be explained by an increase in the geometric thickness of the disk in the dust sublimation zone caused by enhanced accretion of circumstellar matter onto the star. There is reason to believe that such events occur periodically and result from the presence of a companion to V1184 Tau moving in a highly eccentric orbit. The offered interpretation of the photometric activity of V1184 Tau allows this object to be classified as an UX Ori star based on the observed photometric effect and, at the same time, as a FU Ori star based on the pattern of the physical process that produced this effect.  相似文献   

19.
Long-term photometric and spectroscopic observations of the yellow symbiotic star LT Del are analyzed. UBV light curves are presented. Based on the observations of 20 cycles, we have refined the orbital period of the star, P = 476 · d 0 ± 1 · d 0. The brightness has been found to be unstable at some orbital phases with an amplitude up to 0 · m 3. We have measured the fluxes in hydrogen and helium emission lines and in continuum and investigated their relationship to the orbital period. The fluxes in hydrogen and HeI lines follow the UBV light curves in phase; the He II 4686 Å flux does not depend on the phase and is constant within the accuracy of our measurements. The intensity ratio of the 4686 Å andHβ lines changes from 0.2 to 0.9 over the period. We interpret the spectroscopic observations based on the hypothesis of heating and ionization of the stellar wind from a cool component by high-frequency radiation from a hot star with a temperature of 105 K. We have estimated the spectral type of the cool star from our photometry and its continuum energy distribution as a bright K2–4 red giant branch halo star. The bolometric luminosity and mass loss rate have been estimated for the K component to be L bol ~ 700L and \(\dot{M}\) ~ 10?8 M yr?1, respectively.  相似文献   

20.
We present results of modeling of the sample of magnetic stars. We have obtained such important for magnetic star physics parameters as the mean surface magnetic field Bs, the magnetic field at magnetic poles—Bp, the dipole inclination to the rotation equatorial plane α, and the distance to monopoles from the center of the star Δa. We present some information onmagnetic star physics that helps to understand the derived results better.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号