首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The European Centre for Medium-Range Weather Forecasts Re-Analysis Interim (ERA-Interim) meteorology and measurements from the Microwave Limb Sounder, High Resolution Dynamics Limb Sounder, and Ozone Monitoring Instrument onboard the Earth Observing System Aura satellite were applied to analyze the dynamical and chemical features of a cutoff low (COL) event over northeast China in early July 2007. The results showed the polar stratospheric origin of an upper-level warm-core cyclone at 100--300 hPa, associated with a funnel-shaped tropopause intruding into the mid-troposphere just above the COL center. The impacts of the stratospheric intrusion on both column ozone and ozone profiles were investigated using satellite measurements. When the intensity of the COL peaked on 10 July 2007, the total column ozone (TCO) increase reached a maximum (40--70 DU). This could be dynamically attributed to both the descent of the tropopause (~75%) and the downward transport of stratospheric ozone across the tropopause (~25%). Analysis of the tropospheric ozone profiles provided evidence for irreversible transport/mixing of ozone-rich stratospheric air across the tropopause near the upper-level front region ahead of the COL center. This ozone intrusion underwent downstream transport by the upper tropospheric winds, leading to further increase in TCO by 12--16 DU over broad regions extending from east China toward the northern Japan Sea via South Korea. Meteorological analysis also showed the precedence of the stratospheric intrusion ahead of the development of cyclones in the middle and lower troposphere.  相似文献   

2.
The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.  相似文献   

3.
The features of the temperate jet stream including its location, intensity, structure, seasonal evolution and the relationship with the Asian monsoon are examined by using NCEP/NCAR reanalysis data. It is indicated that the temperate jet stream is prominent and active at 300 hPa in winter over the region from 45°-60°N and west of 120°E. The temperate jet stream is represented by a ridge area of high wind speed and dense stream lines in the monthly or seasonal mean wind field, but it .corresponds to an area frequented by a large number of jet cores in the daily wind field and exhibits a distinct boundary that separates itself with the subtropical jet. A comparison of the meridional wind component of the temperate jet stream with that of the subtropical jet shows that the northerly wind in the temperate jet stream is stronger than the southerly component of the subtropical jet, which plays an important role in the temperate jet stream formation and seasonal evolution, and thus the intensity change of the meridional wind component can be used to represent the temperate jet stream's seasonal variation. Analysis of the temperature gradient in the upper troposphere indicates that the temperate jet stream is accompanied by a maximum zonal temperature gradient and a large meridional temperature gradient, leading to a unique jet stream structure and particular seasonal evolution features, which are different from the subtropical jet. The zonal temperature gradient related to the land-sea thermal contrast along the East China coastal lines is responsible for the seasonal evolution of the temperate jet. In addition, there exists a coordinated synchronous change between the movement of the temperate jet and that of the subtropical jet. The seasonal evolution of the meridional wind intensity is closely related to the seasonal shift of the atmospheric circulation in East Asia, the onset of the Asian summer monsoon and the start of Meiyu in the Yangtze and Huaihe River Valleys, and it correlates well with summer and wint  相似文献   

4.
We investigate the Madden–Julian Oscillation(MJO) signal in wintertime stratospheric ozone over the Tibetan Plateau and East Asia using the harmonized dataset of satellite ozone profiles. Two different MJO indices — the all-season Real-Time multivariate MJO index(RMM) and outgoing longwave radiation-based MJO index(OMI) — are used to compare the MJOrelated ozone anomalies. The results show that there are pronounced eastward-propagating MJO-related stratospheric ozone anomalies(mainly within 20–200 h Pa) over the subtropics. The negative stratospheric ozone anomalies are over the Tibetan Plateau and East Asia in MJO phases 4–7, when MJO-related tropical deep convective anomalies move from the equatorial Indian Ocean towards the western Pacific Ocean. Compared with the results based on RMM, the MJO-related stratospheric column ozone anomalies based on OMI are stronger and one phase ahead. Further analysis suggests that different sampling errors, observation principles and retrieval algorithms may be responsible for the discrepancies among different satellite measurements. The MJO-related stratospheric ozone anomalies can be attributed to the MJO-related circulation anomalies,i.e., the uplifted tropopause and the northward shifted westerly jet in the upper troposphere. Compared to the result based on RMM, the upper tropospheric westerly jet may play a less important role in generating the stratospheric column ozone anomalies based on OMI. Our study indicates that the circulation-based MJO index(RMM) can better characterize the MJOrelated anomalies in tropopause pressure and thus the MJO influence on atmospheric trace gases in the upper troposphere and lower stratosphere, especially over subtropical East Asia.  相似文献   

5.
Previous studies have suggested a poleward shift of the zonally averaged jet stream due to rapid warming over continents.However,the regional characteristics of the change in the jet stream are not yet understood.Here,we present evidence suggesting that the East Asian westerly jet did not shift poleward in past decades(1980-2004 relative to 1958-1979),both in winter and summer.Rather,the jet axis has moved southward in summer,but its meridional position is steady in winter.The main change of the jet stream in winter is the enhancement of its intensity.These changes in both summer and winter are consistent with the corresponding changes in the large meridional tropospheric temperature-gradient zone.Based on these results,we suggest that the changes of the jet stream over East Asia are unique and are different from the zonal mean jet stream over the Northern Hemisphere and over the North Atlantic region.  相似文献   

6.
Three striking and impactful extreme cold weather events successively occurred across East Asia and North America during the mid-winter of 2020/21.These events open a new window to detect possible underlying physical processes.The analysis here indicates that the occurrences of the three events resulted from integrated effects of a concurrence of anomalous thermal conditions in three oceans and interactive Arctic-lower latitude atmospheric circulation processes,which were linked and influenced by one major sudden stratospheric warming(SSW).The North Atlantic warm blob initiated an increased poleward transient eddy heat flux,reducing the Barents-Kara seas sea ice over a warmed ocean and disrupting the stratospheric polar vortex(SPV)to induce the major SSW.The Rossby wave trains excited by the North Atlantic warm blob and the tropical Pacific La Nina interacted with the Arctic tropospheric circulation anomalies or the tropospheric polar vortex to provide dynamic settings,steering cold polar air outbreaks.The long memory of the retreated sea ice with the underlying warm ocean and the amplified tropospheric blocking highs from the midlatitudes to the Arctic intermittently fueled the increased transient eddy heat flux to sustain the SSW over a long time period.The displaced or split SPV centers associated with the SSW played crucial roles in substantially intensifying the tropospheric circulation anomalies and moving the jet stream to the far south to cause cold air outbreaks to a rarely observed extreme state.The results have significant implications for increasing prediction skill and improving policy decision making to enhance resilience in“One Health,One Future”.  相似文献   

7.
The authors examined the Madden-Julian Oscillation(MJO) in stratospheric ozone during boreal winter using a simulation from the Specified Dynamics version of the Whole Atmosphere Community Climate Model(SD-WACCM) in 2004 and 2010. Comparison with European Centre for Medium-Range Weather Forecasts Interim Reanalysis(ERA-Interim) data suggested that the model simulation represented well the three-dimensional structure of the MJO-related ozone anomalies in the upper troposphere and stratosphere(i.e., between 200 and 20 h Pa). The negative ozone anomalies were over the Tibetan Plateau and East Asia in MJO phases 3–7, when the MJO convective anomalies travelled from the equatorial Indian Ocean towards the equatorial western Pacific Ocean. Due to the different vertical structures of the MJO-related circulation anomalies, the MJO-related stratospheric ozone anomalies showed different vertical structure over the Tibetan Plateau(25–40°N, 75–105°E) and East Asia(25–40°N, 105–135°E). As a result of the positive bias in the model-calculated ozone in the upper troposphere and lower stratosphere, the amplitude of MJO-related stratospheric ozone column anomalies(10–16 Dobson Units(DU)) in the SD-WACCM simulation was slightly larger than that(8–14 DU) in the ERA-Interim reanalysis.  相似文献   

8.
By means of a three-dimensional meteorological model(MM5)and a chemical model,thedistributions of tropospheric ozone and its precursors over China have been simulated in summerand winter time,16—18 August 1994 and 7—9 January 1995.The distribution of ozone over theTibetan Plateau in summer time is deeply discussed.The simulated results indicate that thedistributions of surface ozone and NO_x are in good agreement with observed results,and humanactivities and photochemical reactions are the main factors controlling the surface ozone and NO_xconcentrations.In addition,higher ozone concentrations are coincided with the air convergence,and the lower concentrations are related to the air divergence.In summer,over the TibetanPlateau the strong flow convergence results in higher ozone concentrations in the lowertroposphere:and the strong flow divergence results in lower ozone concentrations in the uppertroposphere.In winter time ozone concentrations show Iarge-scale characteristics controlled bywesterly flow,and in the jet area they are lower than those outside the jet.  相似文献   

9.
This study simulates the effective radiative forcing(ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol–climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI(Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone(TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere;and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m~(-2), thereby causing an increase in the global annual mean surface temperature by 0.36℃, and precipitation by 0.02 mm d~(-1)(the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4?C in Siberia. There were opposite changes in precipitation near the equator,with an increase of 0.5 mm d~(-1)near the Hawaiian Islands and a decrease of about-0.6 mm d~(-1)near the middle of the Indian Ocean.  相似文献   

10.
Boreal summer intraseasonal oscillation(BSISO) of lower tropospheric ozone is observed in the Indian summer monsoon(ISM) region on the basis of ERA-Interim reanalysis data and ozonesonde data from the World Ozone and Ultraviolet Radiation Data Centre. The 30–60-day intraseasonal variation of lower-tropospheric ozone shows a northwest–southeast pattern with northeastward propagation in the ISM region. The most significant ozone variations are observed in the Maritime Continent and western North Pacific. In the tropics, ozone anomalies extend from the surface to 300 hPa; however, in extratropical areas, it is mainly observed under 500 hPa. Precipitation caused by BSISO plays a dominant role in modulating the BSISO of lower-tropospheric ozone in the tropics, causing negative/positive ozone anomalies in phases 1–3/5–6. As the BSISO propagates northeastward to the western North Pacific, horizontal transport becomes relatively more important, increasing/reducing tropospheric ozone via anticyclonic/cyclonic anomalies over the western North Pacific in phases 3–4/7–8.As two extreme conditions of the ISM, most of its active/break events occur in BSISO phases 4–7/1–8 when suppressed/enhanced convection appears over the equatorial eastern Indian Ocean and enhanced/suppressed convection appears over India, the Bay of Bengal, and the South China Sea. As a result, the BSISO of tropospheric ozone shows significant positive/negative anomalies over the Maritime Continent, as well as negative/positive anomalies over India, the Bay of Bengal,and the South China Sea in active/break spells of the ISM. This BSISO of tropospheric ozone is more remarkable in break spells than in active spells of the ISM, due to the stronger amplitude of BSISO in the former.  相似文献   

11.
The surface and upper-level features associated with a sharp drop of wintertime daily temperature over South Korea is investigated in this study. This sharp drop in daily temperature is called a cold surge and is one of the most hazardous weather phenomena in East Asian winters. An upper-level baroclinic wave of 60°wavelength propagating eastward at a phase speed of 12°longitude per day across the continent of northern China from the west of Lake Baikal toward the eastern coast of China causes the outbreak of cold air over South Korea. The cooling associated with the upper-level baroclinic wave is found at all altitudes under the geopotential height-fall center near the tropopause. The development in the ridge seems to derive the early evolution of the eastward-propagating sinusoidal wave, whereas the trough is connected directly with the tropospheric temperature-drop. An enhancement of the wintertime East Asian jet stream after the outbreak of a cold surge is a response to the steep temperature gradient associated with the developing baroclinic wave.  相似文献   

12.
The South Asia High (SAH) is the dominant feature of the circulation in the upper troposphere and lower stratosphere (UTLS) during the boreal summer,and the upper tropospheric anticyclonic circulation extends into the lower stratosphere.The preferred locations of the center of the SAH occur in two different regions,and the center can be located over the Iranian Plateau or over the Tibetan Plateau.This bimodality has an impact on the distribution of chemical constituents in the UTLS region.We analyzed water vapor (H 2 O),carbon monoxide (CO),and ozone (O 3) data derived from the Aura Microwave Limb Sounder (MLS) and total column ozone data from the Ozone Monitoring Instrument (OMI).For the Iranian Plateau mode of the SAH,the tropospheric tracers exhib-ited a positive anomaly over the Iranian Plateau and a negative anomaly over the Tibetan Plateau,whereas the stratospheric tracer exhibited a negative and a positive anomaly over the Iranian Plateau and the Tibetan Plateau,respectively.For the Tibetan Plateau mode,however,the distribution of the anomaly was the reverse of that found for the chemical species in the UTLS region.Furthermore,the locations of the extrema within the anomaly seemed to differ across chemical species.The anomaly extrema for H 2 O occurred in the vicinity of the SAH ridgeline,whereas CO and O 3 exhibited a northward shift of 4-8 degrees.These impacts of the variation in the SAH on the chemical constitutes in the UTLS region can be attributed in part to the dynamical structure delineated by the tro-popause field and the temperature field at 100 hPa.  相似文献   

13.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.  相似文献   

14.
Recently, the depletion in ozone and aerosol extinctions inside Antarctic Spring westerly vortex and condensation nuclei enhancement events in the mid latitudes stratosphere were related to downward transport of aerosols by subsidence and sedimentation. However, the problems associated with such hypothesis would keep a constraint on photochemical theories on ozone hole and stratospheric condensation nuclei (CN) events. Alternately, the gross features of aerosol hole are better explicable assuming a reversed residual circulation. This opens a path for combined operation on ozone by both photochemistry and dynamics in the same space domain.Independently, we relate the CN events to the growth and transport of negative ion complexes above the Peak of Junge Layer (PJL) without invoking photochemistry in order to be consistant with the observed interhemispheric differences in the planetary wave activity and CN concentration.  相似文献   

15.
The NCEP Global Data Assimilation System analysis of grid data, satellite products of Naval Research Laboratory, conventional meteorological data and observations of automatic weather stations in Guangdong province were used together with environmental conditions, atmospheric circulation, and physical characteristics to diagnose the cause and mechanism of the intensification of tropical cyclone Higos in Southern China. The results showed that favorable environmental conditions of high temperature, humidity of the underlying surface, strong upper divergence, weak vertical wind shear, and the persistence of a southwest jet stream beside the southern Higos were the necessary ingredients that contributed to the maintenance of intensity and re-intensification of Higos. The sinking intrusion of cold air from the lower troposphere was the critical condition for its intensification over land. The frontal genesis caused by weak cold air increased the lower tropospheric convergence and updraft, and the condensation latent heat released by heavy rains promoted convergence. From this positive feedback process, Higos obtained an increasing of positive vorticity and re-intensified over land. The re-intensification was due not only to the build-up of wind and the reduction of pressure but also to the simultaneous warm-up of its warm core.  相似文献   

16.
Analysis of tropospheric ozone residual (TOR) data from satellite measurements indicates an increasing trend of tropospheric ozone over the Yangtze Delta region of China. The increasing trend can be derived both from the annual mean TOR and from the monthly mean TOR except for January and March. The increase rate of the decadal mean TOR was 0.82 DU during 1978-2000. The impact of this long-term trend on the climate and atmospheric oxidizing capacity over the region should be further studied. Data comparison shows a significant correlation between the TOR and surface ozone data collected at Lin'an background station in the Yangtze Delta region, suggesting an internal connection between both quantities.  相似文献   

17.
In this study, we analyzed the dynamical evolution of the major 2012–2013 Northern Hemisphere(NH)stratospheric sudden warming(SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF.The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and-2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012–2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the2012–2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs.The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.  相似文献   

18.
In this study, we analyzed the dynamical evolution of the ma jor 2012-2013 Northern Hemisphere (NH) stratospheric sudden warming (SSW) on the basis of ERA-Interim reanalysis data provided by the ECMWF. The intermittent upward-propagating planetary wave activities beginning in late November 2012 led to a prominent wavenumber-2 disturbance of the polar vortex in early December 2012. However, no major SSW occurred. In mid December 2012, when the polar vortex had not fully recovered, a mixture of persistent wavenumber-1 and -2 planetary waves led to gradual weakening of the polar vortex before the vortex split on 7 January 2013. Evolution of the geopotential height and Eliassen-Palm flux between 500 and 5 hPa indicates that the frequent occurrence of tropospheric ridges over North Pacific and the west coast of North America contributed to the pronounced upward planetary wave activities throughout the troposphere and stratosphere. After mid January 2013, the wavenumber-2 planetary waves became enhanced again within the troposphere, with a deepened trough over East Asia and North America and two ridges between the troughs. The enhanced tropospheric planetary waves may contribute to the long-lasting splitting of the polar vortex in the lower stratosphere. The 2012-2013 SSW shows combined features of both vortex displacement and vortex splitting. Therefore, the anomalies of tropospheric circulation and surface temperature after the 2012-2013 SSW resemble neither vortex-displaced nor vortex-split SSWs, but the combination of all SSWs. The remarkable tropospheric ridge extending from the Bering Sea into the Arctic Ocean together with the resulting deepened East Asian trough may play important roles in bringing cold air from the high Arctic to central North America and northern Eurasia at the surface.  相似文献   

19.
A Tibetan ozone low was found in the 1990s after the Antarctic ozone hole.Whether this ozone low has been recovering from the beginning of the 2000s following the global ozone recovery is an intriguing topic.With the most recent merged TOMS/SBUV(Total Ozone Mapping Spectrometer/Solar Backscatter Ultra Violet) ozone data,the Tibetan ozone low and its long-term variation during 1979-2010 are analyzed using a statistical regression model that includes the seasonal cycle,solar cycle,quasi-biennial oscillation(QBO),ENSO signal,and trends.The results show that the Tibetan ozone low maintains and may become more severe on average during 1979-2010,compared with its mean state in the periods before 2000,possibly caused by the stronger downward trend of total ozone concentration over the Tibet.Compared with the ozone variation over the non-Tibetan region along the same latitudes,the Tibetan ozone has a larger downward trend during 1979-2010,with a maximum value of-0.40±0.10 DU yr 1 in January,which suggests the strengthening of the Tibetan ozone low in contrast to the recovery of global ozone.Regression analyses show that the QBO signal plays an important role in determining the total ozone variation over the Tibet.In addition,the long-term ozone variation over the Tibetan region is largely affected by the thermal-dynamical proxies such as the lower stratospheric temperature,with its contribution reaching around 10% of the total ozone change,which is greatly different from that over the non-Tibetan region.  相似文献   

20.
The interdecadal characteristics of rainfall and temperature in China before and after the abrupt change of the general circulation in 1976 are analyzed using the global 2.5°×2.5° monthly mean reanalysis data from the National Centers for Environmental Prediction of US and the precipitation and temperature data at the 743 stations of China from the National Climate Center of China. The results show that after 1976, springtime precipitation and temperature were anomalously enhanced and reduced respectively in South China, while the reverse was true in the western Yangtze River basin. In summer, precipitation was anomalously less in South China, more in the Yangtze River basin, less again in North China and more again in Northeast China, showing a distribution pattern alternating with negative and positive anomalies (" , +, -, +"). Meanwhile, temperature shows a distribution of warming in South China, cooling in the Yangtze and Huaihe River basins, and warming again in northern China. In autumn, precipitation tended to decrease and temperature tended to increase in in South China and warming was most parts of the country. In winter, the trend across all parts of China. precipitation increased moderately The interdecadal decline of mean temperature in spring and summer in China was mainly due to the daily maximum temperature variation, while the interdecadal increase was mainly the result of the minimum temperature change. The overall warming in autumn (winter) was mostly influenced by the minimum (maximum) temperature variation. These changes were closely related to the north-south shifts of the ascending and descending branches of the Hadley cell, the strengthening and north-south progression of the westerly jet stream, and the atmospheric stratification and water vapor transport conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号