首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
南天山区域大地构造与演化   总被引:27,自引:0,他引:27  
塔里木和中天山之间的南天山造山带,经历了复杂的构造演化与地壳增生过程。综合分析南天山造山带的构造、地层、古生物、岩石、地球化学和同位素年代学等方面的资料,特别是放射虫、蛇绿岩、蓝片岩等方面的最新研究成果,讨论了南天山的区域构造格局和演化过程。南天山主体为一上百公里宽的增生-碰撞混杂带-南天山(蛇绿)混杂带;其北侧为中天山岛弧,是仰冲壳楔;南侧为塔里木陆块,是俯冲壳楔。古南天山洋为一广阔的大洋,南天山碰撞造山作用起始于二叠纪末-三叠纪初,新近纪-第四纪进入陆内造山作用阶段。  相似文献   

2.
《International Geology Review》2012,54(15):1941-1958
The Qiarbahete complex in NW China consists of gabbroic diorite, granodiorite, and late-stage quartz diorite porphyry veins. Zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb analyses show that the gabbroic diorite and granodiorite formed at 368 ± 5.2 Ma and 354 ± 4.1 Ma, respectively, indicating that the complex was emplaced in the Late Devonian–Early Carboniferous. The gabbroic diorites, characteristic of Sanukitoids, exhibit high Mg# (62 average), MgO (6.84% average), Cr (195 ppm average), and Ni (61.4 ppm average) contents. The rocks show moderately fractionated rare earth element (REEs) patterns and weak negative Eu anomalies (δEu: 0.83–0.89), enrichment of large ion lithophile elements (LILEs), and depletion of high field strength elements (HFSEs), with low ?Nd(t) values (1.46–1.73). The gabbroic diorites originated from partial melting of a hydrous mantle wedge followed by assimilation of crust during ascent. The granodiorites show a geochemical affinity with adakitic rocks, e.g. SiO2 (64.95–67.87%) > 56%, Al2O3 (15.88–16.56%) > 15%, MgO (1.79–2.31%) < 3%, Sr (315–375 ppm) > 300 ppm, and Yb (1.84–2.06 ppm). They are enriched in light rare earth elements (LREEs) and LILEs and depleted in HFSEs, with weak negative Eu anomalies (δEu: 0.78–0.87). The granodiorites were mainly derived by the partial melting of a subducted oceanic slab, followed by subsequent melt–mantle interaction and crustal rocks contamination. All these indicate that the Qiarbahete complex was emplaced in a continental arc setting attending the southward subduction of the Junggar Ocean during the Late Devonian–early Carboniferous, generating the lateral accretion of continental crust in NW Tianshan.  相似文献   

3.
中天山包尔图一带发育一套变质变形的花岗岩,属钙碱性系列,其具有较高的Hf和Th含量,而Li、Nb和Ta的含量低;稀土总量中等,具中等铕负异常,稀土配分模式曲线为V型曲线;显示出加里东型I型花岗岩、同碰撞花岗岩的特征。锆石LA-ICP-MS U-Pb测年获得了1207±87Ma、455.6±1.8Ma和433±19Ma 3组年龄,其中1207±87Ma代表了碎屑锆石的年龄,说明包尔图一带存在元古宙古老基底;455.6±1.8Ma代表了包尔图岩体的侵位年龄,代表了北天山洋与中天山陆块早古生代一次重要碰撞造山事件;433±19Ma则代表了包尔图岩体侵入岩的后期变质改造年龄,说明早志留世中天山发生过一次变质作用。这次研究的成果对揭示中天山地区的构造演化有着重要的意义。  相似文献   

4.
5.
This study used new and published U-Pb geochronological, chemical, and Sr-Nd-Hf-O isotopic data (n > 2500) from Jurassic granite-granodiorite-diorite-monzonite-gabbro plutons in the southern part of the Korean Peninsula to assess the spatiotemporal evolution of a flare-up magmatism, its tectonic connection, and specific contributions of mantle and crustal reservoirs to the magmas generated. After a ~15 m.y. magmatic gap in the Late Triassic, calc-alkaline granitoids intruded into the outboard Yeongnam Massif, then magmatic activity migrated systematically toward the inboard Gyeonggi Massif. The early phase of the Jurassic magmatism is represented by relatively sodic plutons showing distinctly primitive isotopic signatures. The crustal signature of the plutons became increasingly prominent with decreasing age. Voluminous inboard plutons in the Gyeonggi Massif and the intervening Okcheon Belt are dominated by Middle Jurassic peraluminous granites that show isotopic compositions conspicuously shifted toward old crustal values. The Nd-Hf isotopic compositions of the inboard plutons are distinctly less radiogenic than those of Jurassic plutons in Southwest Japan and southeastern China, which corroborates the North China affinity of the Yeongnam and Gyeonggi massifs. The geochronological and geochemical data compiled in this study suggest a tectonomagmatic model consisting sequentially of (1) an extension-dominated arc system in the margin of the Yeongnam Massif (ca. 200–190 Ma); (2) low-angle subduction and the development of an advancing arc system (ca. 190–180 Ma); (3) continued low-angle subduction, extensive underthrusting of fertile crustal materials to the arc root, and consequent magmatic flare-up (ca. 180–170 Ma); and (4) flat subduction and the development of the Honam Shear Zone (ca. 170–160 Ma). The subsequent magmatic lull and previous dating results for synkinematic rocks and minerals indicate that the compressional arc system was maintained until the Early Cretaceous.  相似文献   

6.
新疆东天山康古尔塔格金矿带成矿作用的构造制约   总被引:2,自引:4,他引:2  
康古尔塔格金矿带呈东西向展布于新疆东天山晚古生代造山带的中部,发育在秋格明塔什-黄山韧性剪切带的南缘,阿奇山-雅满苏火山岩带的北缘,形成的金矿床可划分为三种主要端元类型,即浅成低温热液型(热泉型)、剪切带交代蚀变岩型、与中浅成花岗岩类有关的石英脉型。金的成矿作用主要受控于二叠纪后碰撞阶段秋格明塔什-黄山大型韧性剪切带形成的右行走滑剪切系统,在剪切系统的不同构造部位由于应力应变状态的不同、岩石渗透率的不同、构造层次(深度)的不同等,导致成矿流体和成矿物质在组成比例上的差异,从而形成不同类型的金矿床。所有类型的金矿资源是在同一构造环境下相同区域成矿事件的产物,在不同构造部位产出的金矿床类型可以组成一个连续的金矿化系列。区域一级剪切构造带控制金矿带成矿物质和成矿流体的主要来源,二级剪切构造控制金矿床的发育,三级剪切裂隙系统控制金矿体(脉)的产出,从而构成三级构造控矿系统。  相似文献   

7.
The Yili Block is important for understanding the Late Paleozoic geodynamic evolution of Central Asia. It is bounded to the north by the Northern Tianshan Carboniferous flysch and ophiolitic mélange. The center of the Block is dominated by Carboniferous sedimentary rocks with intercalation of volcanic rocks. Petrological and geochemical features of these Carboniferous volcanic rocks show that: (1) they belong to the calc-alkaline series, (2) they display prominent Nb–Ta negative anomalies consistent with subduction-related magmas, and (3) HFSE-based discriminations place these volcanic rocks in the field of continental arcs. The depositional evolution of the sedimentary series shows evidence for Carboniferous sedimentation in a basin instead of rifting as previously proposed. All these evidences, together with the occurrence of contemporaneous turbidites and ophiolitic mélange along the northern boundary of the Yili Block, allow us to infer that the northern border of the Yili Block was a continental active margin during the Carboniferous. The Late Carboniferous southward subduction that finally closed the Late Devonian to Early Carboniferous North Tianshan oceanic basin was followed by Permian–Mesozoic polyphase transcurrent faulting.  相似文献   

8.
Previous models for the tectonic evolution of northeastern Siberia have proposed the existence of a Kolyma plate composed of the Kolyma and Omolon massifs of presumed Precambrian age. Lithologic similarities between the Siberian platform and the Cherskiy Mountains and the presence of oceanic and island arc type deposits in the Kolyma-Indigirka interfluve suggest that no such plate exists. The eastern margin of the Siberian plate is suggested to lie along a line between the Ulakhan Sis Range, the Alazeya uplift and the Arga Tas Range; the Cherskiy Mountains and the Verkhoyansk fold belt are parts of the Siberian plate. The Paleozoic deposits of the Omolon massif are unlike those found in the Cherskiys or Siberia. Paleomagnetic data from the Omolon massif are discordant from data from Siberia. It is suggested that the Omolon massif represents a microplate which accreted onto Siberia in the Jurassic. Ophiolites in central Chukotka are of the same emplacement age as in the western Brooks Range and may have been emplaced at the initiation of the rotation of Arctic Alaska. Geometric and limited stratigraphic data suggest that the East Siberian Sea may be floored by oceanic crust left by an incomplete closure between Arctic Alaska, Siberia and Omolon. The tectonic position of the Prikolymsk massif remains ambiguous.  相似文献   

9.
关于南天山碰撞造山时代的讨论   总被引:7,自引:1,他引:6  
南天山是天山山脉的一支,是中亚型造山带的典型代表,它经历了复杂的增生—碰撞过程。关于古南天山洋最终闭合—碰撞造山(碰撞事件)发生的时间一直存在不同的认识,争论由来已久。综合分析南天山造山带的构造、地层、古生物、岩石、地球化学和同位素年代学等方面的资料,特别是对放射虫、蛇绿岩、蓝片岩、火山弧及前陆盆地沉积等地质事实的研究,我们认为,南天山碰撞造山作用起始于二叠纪末—三叠纪初。  相似文献   

10.
罗金海  车自成  曹远志  张敬艺 《岩石学报》2008,24(10):2281-2288
南天山南缘小提坎里克组酸性火山岩高碱(Na2O+K2O=6.03%~7.70%)且富钾(K2O/Na2O=2.35,5.03),铝饱和指数A/CNK=0.89~1.59(平均1.24),里特曼指数(σ)为1.48,属于过铝质高钾钙碱性火山岩系。轻稀土强烈富集,亏损Ba、Cs、Nb、Ta、Sr等大离子亲石元素,Hf、Zr等高场强元素基本无亏损,具有明显的负铕异常(δEu=0.44~0.66),总体具有碰撞晚期花岗岩类的地球化学特点。岩石的Nd/Th(1.78—3.50)、Th/U(4.10~9.79)、La/Ta(17.69~35.77)和Nb/Ta(10.48~11.84)比值显示了壳源特征。对火山岩中锆石进行的激光探针等离子体质谱(LA-ICP—MS)U—Pb微区测定获得了289.4&#177;5.5Ma的形成年龄。结合区域构造分析认为,早二叠世初南天山地区处于碰撞晚期冲断造山作用阶段,小提坎里克组火山岩是对南天山造山带南缘碰撞晚期冲断变形和前陆盆地发育的响应。  相似文献   

11.
The late Palaeoproterozoic (1.72–1.70 Ga) ferroan granites of the Khetri complex, northern Aravalli orogen, NW India, were extensively metasomatised ~900 Ma after their emplacement, at around 850–830 Ma by low-temperature (ca. 400 °C) meteoric fluids that attained metamorphic character after exchanging oxygen with the surrounding metamorphic rocks. Albitisation is the dominant metasomatic process that was accompanied by Mg and Ca metasomatism. A two-stage metasomatic model is applicable to all the altered ferroan intrusives. The stage I is represented by a metasomatic reaction interface that developed as a result of transformation of the original microcline–oligoclase (An12–14) granite to microcline–albite (An1–3) granite, and this stage is rarely preserved. In contrast, the stage II metasomatic reaction front, where the microcline-bearing albite granite has been transformed to microcline-free albite granite, is readily recognisable in the field and present in most of the intrusives. Some of them lack an obvious reaction interface due to the presence of stage II albite granites only. When studied in isolation, these intrusives were incorrectly classified and their tectonic setting was misinterpreted. Furthermore, our results show that the mafic mineralogy of metasomatised granites has a significant impact on the characterisation of such rocks in the magmatic classification and discrimination diagrams. Nevertheless, the stage I metasomatised granites can be appropriately characterised in these diagrams, whereas the characterisation of the stage II granites will lead to erroneous interpretations. The close spatial association of these high heat producing ferroan granites with iron oxide–copper–gold (IOCG), U and REE mineralisation in the region indicates a genetic link between the metasomatism and the mineralisation. World-class IOCG, U and REE deposits are associated with metasomatised ferroan granites, suggesting that such a relationship may act as a critical first-order exploration target for undiscovered mineral deposits.  相似文献   

12.
博罗霍努岩体是发育在新疆伊犁北部的一个大型海西期花岗岩体,总体沿近SE-NW向分布,出露面积逾2000km^2。该岩体主要包括三类花岗岩:灰黑色辉石闪长岩、浅色黑云母花岗岩和紫红色黑云母钾长花岗岩。锆石U-Pb La-ICP-MS定年表明,辉石闪长岩的年龄为301±7Ma.黑云母花岗岩的年龄范围为294±7~285±7Ma,而黑云母钾长花岗岩则形成于280±5~266±6Ma。岩石地球化学分析显示,黑云母花岗岩和钾长花岗岩以准铝或弱过铝I型花岗岩为主,个别属于弱过铝S型花岗岩。在微量元素方面,这些花岗岩均富集轻稀土而亏损重稀土,但来自两个剖面的花岗岩具有不同的稀土元素配分模式,可能代表它们的岩浆源区有所不同,因此需要进一步对这些花岗岩进行同位素地质学研究。相对于洋脊花岗岩而言,博罗霍努岩体的花岗岩明显富集K,Rb,Ba和Th,同时,显著亏损Nb,Ta,Y和Yb。以上地球化学特征及微量元素判别图表明,这些花岗岩类形成于俯冲有关的火山岛弧环境。结合伊犁及邻区岩浆岩的特征及其时代,可以认为博罗霍努岩体的形成与天山北部洋壳向南的俯冲造山作用有关。西天山北部俯冲造山作用最终在中二叠世结束,并在中—晚二叠世进入陆内造山和伸展拉张阶段。  相似文献   

13.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

14.
15.
The Aravalli mountain range (AMR) in the northwestern part of the Indian Peninsula consists of two main Proterozoic metasedimentary and metaigneous sequences, the Aravalli and Delhi Supergroups, respectively, which rest over the Archaean gneissic basement. A synthesis and reinterpretation of the available geological, geochronological and geophysical data, including results of own field work and geophysical interpretations pertaining to the AMR, indicate its origin as an inverted basin: rifting into granitoid basement began ca. 2.5; Ga ago with Aravalli passive rifting (ca. 2.5–2.0 Ga) and Delhi active rifting (ca. 1.9–1.6 Ga). Associated mafic igneous rocks show both continental and oceanic tholeiitic geochemistry and are comparable with Phanerozoic, rift-related magmatic products. Available data showed no conclusive evidence for oceanic lithoshere and island-arc/active margin magmatic activity in the AMR. Subsequent inversion and orogeny (Delhi orogeny, ca. 1.5-1.4 Ga) lead to complex deformation and metamorphism. Only in the western and central zones has the basement been involved in this mid-Proterozoic (Delhi) deformation, whereas it is unaffected in the eastern part, except for local shear zones mainly along the basement/cover interface. The grade of metamorphism increases from the greenschist facies in the east to the amphibolite facies in the west with local HP assemblages. These latter are explained by rapid burial and exhumation of thin and cool continental lithosphere. Subsequently, during a final, mild phase of inversion, the Vindhyan basins consisting mainly of sandstones, limestones and shales, flanking the AMR formed which are comparable to foreland basins. The tectonic evolution of the AMR is therefore interpreted as an example of a major inverted continental rift and of a Proterozoic intra-continental orogen.  相似文献   

16.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

17.
新疆南天山构造格架及构造演化   总被引:7,自引:1,他引:7  
南天山碰撞造山带位于西伯利亚与塔里木地块之间的北亚造山区南部的天山造山系的中南部,是塔里木地块与哈萨克斯坦-准噶尔地块之间的一条构造带,地理上由哈尔克山、额尔宾山、虎拉山等组成,地质上主要由古生代地质体组成,其南北两侧均为活动陆缘,中间由洋壳残片、洋岛和增生杂岩组成,是南天山古生代洋盆演化的产物。南天山古洋盆从震旦纪裂解,寒武纪持续扩张,奥陶纪—石炭纪向南北两侧俯冲闭合,至二叠纪南天山造山带进入后造山调整阶段。  相似文献   

18.
陈博  侯泉林  冯宏业  郭虎  许英霞 《岩石学报》2019,35(7):2086-2104
阿沙哇义金矿位于中国新疆南天山造山带,属于著名的中亚南天山锑-汞-金成矿带的东延部分。该矿床严格受断裂所控制,以浸染状黄铁矿化、毒砂化为特征。矿化可分为三个阶段:早期无矿或贫矿石英阶段,中期石英多金属硫化物阶段,晚期石英-碳酸盐阶段。其中,中期是主要成矿阶段。成矿流体气相成分以H_2O为主,摩尔含量为75%~93%,其次为CO_2,摩尔含量为6%~25%,其余为CH_4、C_2H_6、H_2S、N_2和Ar;液相成分阳离子以Na~+为主,含少量K~+、Ca~(2+)离子,阴离子以Cl~-为主,SO~(2-)次之;矿石的Au含量与其流体的CO_2含量呈反相关,与K~+含量呈正相关。硫化物成分分析结果表明:(1)围岩地层和矿石中的黄铁矿和毒砂是重要的载金矿物,黄铁矿Au含量为0~0. 09%,平均值0. 03%;毒砂Au含量为0~0. 28%,平均值0. 07%;(2)黄铁矿和毒砂Au含量与其自形程度没有明显的相关性;(3)环带状黄铁矿较均质结构黄铁矿具有更高的Au含量;(4)岩体中的黄铁矿几乎不含Au。在成矿构造环境、成矿流体特征及演化、金矿富集机制、成矿温压条件等方面,该矿床与世界上大多数造山型金矿显示出一致性,成矿类型应属于剥蚀程度较浅的造山型金矿。断层阀作用控制的断层愈合-破裂导致的流体不混溶作用是本区金富集、沉淀的最重要机制,但流体混合机制对金的富集沉淀也发挥了作用。黄铁矿、毒砂发育及较多的含炭物质三者共存是本区寻找富矿的关键标志。  相似文献   

19.
中国—吉尔吉斯斯坦天山地处中亚天山造山带中段,地质构造复杂,矿产资源丰富。在前人资料基础上,基于区域构造-岩石组合的分布发育及时空属性特征,统一将研究区划分为哈萨克斯坦和塔里木两大板块,二者由南天山晚古生代缝合带所焊接。其中,进一步划分为5个二级单元,18个三级单元。研究认为,研究区内北、中、南天山构造格架连续,在800 Ma(相当于南华纪下限)前后都完成了大陆块体的拼合,成为全球新元古代罗迪尼亚超大陆的组成部分。此后经历了大致相同的构造演化史,从中二叠世开始全区转化成陆内盆山构造格局,新生代印度大陆同欧亚大陆碰撞使这一陆内盆山构造格局不断臻于完善。  相似文献   

20.
阿尔金碰撞造山带西段的构造特征   总被引:13,自引:2,他引:13  
根据阿尔金山西段前早古生代变质岩的岩石组成、沉积建造、变形变质作用改造历史、岩石地球化学特征等研究,将阿尔金碰撞造山带西段划分为3个构造单元北阿尔金地块、中阿尔金地块(包括英格里克构造-蛇绿混杂岩带、肖鲁克·布拉克高压变质岩带和塔什萨依玉石矿高绿片岩相-低角闪岩相变质岩带)和南阿尔金地块(包括南阿尔金中-新元古界隆起带和阿尔金南缘复合构造-蛇绿混杂岩带).提出该碰撞造山带经历了前长城纪古陆核形成阶段、长城纪-青白口纪不同基底联合阶段和早古生代洋陆转换阶段3个阶段的构造演化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号