首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first results of our X‐shooter observations for a sample of dwarf (–17 < MB < –15) galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher‐z star‐forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early‐type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early‐type galaxies (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We present a deep Giant Metrewave Radio Telescope (GMRT) search for H  i 21-cm emission from three dwarf galaxies, viz. POX 186, SC 24 and KKR 25. Based, in part, on previous single-dish H  i observations, these galaxies have been classified as a blue compact dwarf (BCD), a dwarf irregular and a transition galaxy, respectively. However, in conflict with previous single-dish detections, we do not detect H  i in SC 24 or KKR 25. We suggest that the previous single-dish measurements were probably confused with the local Galactic emission. In the case of POX 186, we confirm the previous non-detection of H  i but with substantially improved limits on its H  i mass. Our derived upper limits on the H  i mass of SC 24 and KKR 25 are similar to the typical H  i mass limit for dwarf spheroidal (dSph) galaxies, whereas in the case of POX 186, we find that its gas content is somewhat smaller than is typical of BCD galaxies.  相似文献   

3.
X-ray and γ-ray observations can help understand the origin of the electron and positron signals reported by ATIC, PAMELA, PPB-BETS, and Fermi. It remains unclear whether the observed high-energy electrons and positrons are produced by relic particles, or by some astrophysical sources. To distinguish between the two possibilities, one can compare the electron population in the local neighborhood with that in the dwarf spheroidal galaxies, which are not expected to host as many pulsars and other astrophysical sources. This can be accomplished using X-ray and γ-ray observations of dwarf spheroidal galaxies. Assuming the signal detected by Fermi and ATIC comes from dark matter and using the inferred dark matter profile of the Draco dwarf spheroidal galaxy as an example, we calculate the photon spectrum produced by electrons via inverse Compton scattering. Since little is known about the magnetic fields in dwarf spheroidal galaxies, we consider the propagation of charged particles with and without diffusion. Extending the analysis of Fermi collaboration for Draco, we find that for a halo mass ∼109 M, even in the absence of diffusion, the γ-ray signal would be above the upper limits. This conclusion is subject to uncertainties associated with the halo mass. If dwarf spheroidal galaxies host local magnetic fields, the diffusion of the electrons can result in a signal detectable by future X-ray telescopes.  相似文献   

4.
The results obtained from a study of the mass distribution of 36 spiral galaxies are presented. The galaxies were observed using Fabry–Perot interferometry as part of the GHASP survey. The main aim of obtaining high-resolution Hα 2D velocity fields is to define more accurately the rising part of the rotation curves which should allow to better constrain the parameters of the mass distribution. The Hα velocities were combined with low resolution H  i data from the literature, when available. Combining the kinematical data with photometric data, mass models were derived from these rotation curves using two different functional forms for the halo: an isothermal sphere (ISO) and a Navarro–Frenk–White (NFW) profile. For the galaxies already modelled by other authors, the results tend to agree. Our results point at the existence of a constant density core in the centre of the dark matter haloes rather than a cuspy core, whatever the type of the galaxy from Sab to Im. This extends to all types the result already obtained by other authors studying dwarf and low surface brightness galaxies but would necessitate a larger sample of galaxies to conclude more strongly. Whatever model is used (ISO or NFW), small core radius haloes have higher central densities, again for all morphological types. We confirm different halo scaling laws, such as the correlations between the core radius and the central density of the halo with the absolute magnitude of a galaxy: low-luminosity galaxies have small core radius and high central density. We find that the product of the central density with the core radius of the dark matter halo is nearly constant, whatever the model and whatever the absolute magnitude of the galaxy. This suggests that the halo surface density is independent from the galaxy type.  相似文献   

5.
The thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos is governed at certain conditions by radiation of HD lines. A small fraction of the shocked gas can cool down to the temperature of the cosmic microwave background (CMB). We estimate an upper limit for this fraction: at z = 10 it increases sharply from about qT ∼ 10–3 for dark halos of M = 5 × 107 M to ∼ 0.1 for halos with M = 108 M. Further increase of the halo mass does not lead however to a significant growth of qT – the asymptotic value for M ≫ 108 M is 0.3. We estimate the star formation rate associated with such shock waves, and show that they can provide a small but not negligible fraction of the star formation. We argue that extremely metal‐poor low‐mass stars in the Milky Way may have been formed from primordial gas behind such shocks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present 21-cm H  i line observations of the blue compact dwarf galaxy NGC 1705. Previous optical observations show a strong outflow powered by an ongoing starburst dominating the H  ii morphology and kinematics. In contrast, most of the H  i lies in a rotating disc. An extraplanar H  i spur accounts for ∼8 per cent of the total H  i mass, and is possibly associated with the H  ii outflow. The inferred mass loss rate out of the core of the galaxy is significant, ∼0.2 − 2 M yr−1, but does not dominate the H  i dynamics. Mass model fits to the rotation curve show that the dark matter (DM) halo is dominant at nearly all radii and has a central density ρ0 ≈ 0.1 M pc−3: ten times higher than typically found in dwarf irregular galaxies, but similar to the only other mass-modelled blue compact dwarf, NGC 2915. This large difference strongly indicates that there is little evolution between dwarf irregular and blue compact dwarf types. Instead, dominant DM haloes may regulate the morphology of dwarf galaxies by setting the critical surface density for disc star formation. Neither our data nor catalogue searches reveal any likely external trigger to the starburst in NGC 1705.  相似文献   

7.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

8.
We present a simplified analytic approach to the problem of the spiralling of a massive body orbiting within the dark halo of a dwarf galaxy. This dark halo is treated as the core region of a King distribution of dark matter particles, in consistency with the observational result of dwarf galaxies having solid-body rotation curves. Thus we derive a simple formula which provides a reliable and general first-order solution to the problem, totally analogous to the one corresponding to the dynamical friction problem in an isothermal halo. This analytic approach allows a clear handling and a transparent understanding of the physics and the scaling of the problem. A comparison with the isothermal case shows that in the core regions of a King sphere, dynamical friction proceeds at a different rate, and is sensitive to the total core radius. Thus, in principle, observable consequences may result. In order to illustrate the possible effects, we apply this formula to the spiralling of globular cluster orbits in dwarf galaxies, and show how present-day globular cluster systems could, in principle, be used to derive better limits on the structure of dark haloes around dwarf galaxies, when the observational situation improves. As a second application, we study the way a massive black hole population forming a fraction of these dark haloes would gradually concentrate towards the centre, with a consequent deformation of an originally solid-body rotation curve. This effect allows us to set limits on the fraction/mass of any massive black hole minority component of the dark haloes of dwarf galaxies. In essence, we take advantage of the way the global matter distribution fixes the local distribution function for the dark matter particles, which in turn determines the dynamical friction problem.  相似文献   

9.
We conduct high-resolution collisionless N -body simulations to investigate the tidal evolution of dwarf galaxies on an eccentric orbit in the Milky Way (MW) potential. The dwarfs originally consist of a low surface brightness stellar disc embedded in a cosmologically motivated dark matter halo. During 10 Gyr of dynamical evolution and after five pericentre passages, the dwarfs suffer substantial mass loss and their stellar component undergoes a major morphological transformation from a disc to a bar and finally to a spheroid. The bar is preserved for most of the time as the angular momentum is transferred outside the galaxy. A dwarf spheroidal (dSph) galaxy is formed via gradual shortening of the bar. This work thus provides a comprehensive quantitative explanation of a potentially crucial morphological transformation mechanism for dwarf galaxies that operates in groups as well as in clusters. We compare three cases with different initial inclinations of the disc and find that the evolution is fastest when the disc is coplanar with the orbit. Despite the strong tidal perturbations and mass loss, the dwarfs remain dark matter dominated. For most of the time, the one-dimensional stellar velocity dispersion, σ, follows the maximum circular velocity, V max, and they are both good tracers of the bound mass. Specifically, we find that   M bound∝ V 3.5max  and     in agreement with earlier studies based on pure dark matter simulations. The latter relation is based on directly measuring the stellar kinematics of the simulated dwarf, and may thus be reliably used to map the observed stellar velocity dispersions of dSphs to halo circular velocities when addressing the missing satellites problem.  相似文献   

10.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

11.
We explore properties of close galaxy pairs and merging systems selected from the Sloan Digital Sky Survey Data Release 4 in different environments with the aim to assess the relative importance of the role of interactions over global environmental processes. For this purpose, we perform a comparative study of galaxies with and without close companions as a function of local density and host halo mass, carefully removing sources of possible biases. We find that at low- and high-local-density environments, colours and concentration indices of close galaxy pairs are very similar to those of isolated galaxies. At intermediate densities, we detect significant differences, indicating that close pairs could have experienced a more rapid transition on to the red sequence than isolated galaxies. The presence of a correlation between concentration index and colours indicates that the physical mechanism responsible for the colour transformation also operates in the transformation of the luminous matter distribution. At fixed local densities, we find a dependence of the red galaxy fraction on dark matter halo mass for galaxies with or without a close companion. This suggests the action of host halo mass related effects. Regardless of dark matter halo mass, we show that the percentage of red galaxies in close pairs and in the control sample are comparable at low- and high-local-density environments. However, at intermediate local densities, the gap in the red fraction between close pairs and the control galaxies increases from ∼10 per cent in low-mass haloes up to ∼50 per cent in the most massive ones. Interestingly, we also detect that 50 per cent of merging systems populate the intermediate local environments, with a large fraction of them being extremely red and bulge dominated. Our findings suggest that in intermediate-density environments galaxies are efficiently pre-processed by close encounters and mergers before entering higher local density regions.  相似文献   

12.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

13.
We present results of photometric observations under excellent seeing conditions of Shakbazian Compact Groups. We obtained the seeing‐unconvolved surface brightness profiles of individual galaxies in the I band. We also determined the BI color index for each galaxy, and investigated the presence of cores in the early type galaxies. We constructed models for the mass distribution of the individual galaxies. The mass‐to‐light (𝔐/L) ratios have normal values, and the conclusion that these groups have little dark matter is confirmed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
One of the predictions of the standard cold dark matter model is that dark haloes have centrally divergent density profiles. An extensive body of rotation curve observations of dwarf and low surface brightness galaxies shows the dark haloes of those systems to be characterized by soft constant-density central cores. Several physical processes have been proposed to produce soft cores in dark haloes, each one with different scaling properties. With the aim of discriminating among them we have examined the rotation curves of dark-matter-dominated dwarf and low surface brightness galaxies and the inner mass profiles of two clusters of galaxies lacking a central cD galaxy and with evidence of soft cores in the centre. The core radii and central densities of these haloes scale in a well-defined manner with the depth of their potential wells, as measured through the maximum circular velocity. As a result of our analysis we identify self-interacting cold dark matter as a viable solution to the core problem, where a non-singular isothermal core is formed in the halo centre surrounded by a Navarro, Frenk & White profile in the outer parts. We show that this particular physical situation predicts core radii in agreement with observations. Furthermore, using the observed scalings, we derive an expression for the minimum cross-section ( σ ) which has an explicit dependence with the halo dispersion velocity ( v ). If m x is the mass of the dark matter particle: σ m x ≈4×10−25 (100 km s−1  v −1) cm2 GeV−1.  相似文献   

15.
We re-examine the Fall & Efstathiou scenario for galaxy formation, including the dark halo gravitational reaction to the formation of the baryon disc, as well as continuous variations in the intrinsic halo density profile. The recently published rotation curves of low surface brightness (LSB) and dwarf galaxies together with previously known scaling relations provide sufficient information on the present-day structure of late-type disc galaxies to invert the problem. By requiring that the models reproduce all the observational restrictions we can fully constrain the initial conditions of galaxy formation, with a minimum of assumptions, in particular without the need to specify a cold dark matter (CDM) halo profile. This allows one to solve for all the initial conditions, in terms of the halo density profile, the baryon fraction and the total angular momentum. We find that a unique initial halo shape is sufficient to accurately reproduce the rotation curves of both LSB and normal late-type spiral galaxies. This unique halo profile differs substantially from that found in standard CDM models. A galactic baryon fraction of 0.065 is found. The initial value of the dimensionless angular momentum is seen to be the principal discriminator between the galaxy classes we examine. The present-day scalings between structural parameters are seen to originate in the initial conditions.  相似文献   

16.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
Galaxies are believed to be in one-to-one correspondence with simulated dark matter subhaloes. We use high-resolution N -body simulations of cosmological volumes to calculate the statistical properties of subhalo (galaxy) major mergers at high redshift ( z = 0.6–5). We measure the evolution of the galaxy merger rate, finding that it is much shallower than the merger rate of dark matter host haloes at   z > 2.5  , but roughly parallels that of haloes at   z < 1.6  . We also track the detailed merger histories of individual galaxies and measure the likelihood of multiple mergers per halo or subhalo. We examine satellite merger statistics in detail: 15–35 per cent of all recently merged galaxies are satellites, and satellites are twice as likely as centrals to have had a recent major merger. Finally, we show how the differing evolution of the merger rates of haloes and galaxies leads to the evolution of the average satellite occupation per halo, noting that for a fixed halo mass, the satellite halo occupation peaks at   z ∼ 2.5  .  相似文献   

18.
Using the multi-band photometric data of all five CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey) fields and the near-infrared (F125W and F160W) high-resolution images of HST WFC3 (Hubble Space Telescope Wide Field Camera 3), a quantitative study of morphology and structure of mass-selected galaxies is presented. The sample includes 8002 galaxies with a redshift 1 < z < 3 and stellar mass M*> 1010M. Based on the Convolutional Neural Network (ConvNet) criteria, we classify the sample galaxies into SPHeroids (SPH), Early-Type Disks (ETD), Late-Type Disks (LTD), and IRRegulars (IRR) in different redshift bins. The findings indicate that the galaxy morphology and structure evolve with redshift up to z ~ 3, from irregular galaxies in the high-redshift universe to the formation of the Hubble sequence dominated by disks and spheroids. For the same redshift interval, the median values of effective radii (re) of different morphological types are in a descending order: IRR, LTD, ETD, and SPH. But for the Sérsic index (n), the order is reversed (SPH, ETD, LTD, and IRR). In the meantime, the evolution of galaxy size (re) with the redshift is explored for the galaxies of different morphological types, and it is confirmed that their size will enlarge with time. However, such a phenomenon is not found in the relations between the redshift (1 < z < 3) and the mean axis ratio (b/a), as well as the Sérsic index (n).  相似文献   

19.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

20.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号