首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distribution of electric charge on the marine aerosol was determined near the sea surface of the Indian Ocean and the North Atlantic during the final stage of the Snellius II-expedition. Mean values for small ion concentrationsn +=455 cm–3 andn =340 cm–3 were found over the Atlantic, whilen +=310 andn =250 cm–3 were the mean values over the Indian Ocean. The ration +/n increased from 1.2 to 2.0 with decreasing wind velocity. At wind velocities below 5 m/s 75% of the net space charge near the ocean surface was found to be carried by small ions.  相似文献   

2.
Summary Results of measurements of the atmospheric electrical conductivity and potential gradient made during the sixth Scientific Cruise of the Indian Oceanographic Ship INS Kistna in the Bay of Bengal during February–March 1963 are presented. Observations were made when the skies were generally clear and the sea calm, in the geographical area 8°N to 17°N and 80°E to 95°E, on the outward journey of INS Kistna from Madras (80°E, 13°N) to Port Blair (93°E, 12°N) and on the return journey to Madras.Over the ocean where there are no local sources of pollution, the measured values of conductivity and potential gradient are in agreement with theoretical values, assuming that an ion equilibrium exists, that ions are destroyed primarily by collision with small ions of opposite sign and that small ions are produced only by cosmic radiation. The values of electrical conductivity obtained are generally of the same order as those to be expected from theoretical considerations and in general agreement with those obtained during the Carnegie cruises in the Indian Ocean in 1920. There are, however, significant variations near the coast where the electric structure above the ocean is affected by continental sources of pollution. Conductivity values near the land are about half that in the unpolluted air over the ocean but prevailing winds prevent the extension of pollution beyond 100–200 km from the coast in this season.
Zusammenfassung Es wird über Messungen der luftelektrischen Leitfähigkeit und des Potentialgefälles berichtet, welche während der Sechsten Wissenschaftlichen Kreuzfahrt des indischen Ozeanographischen Forschungsschiffes Ins Kistna in der Bengalischen Bucht im Februar und März 1963 ausgeführt wurden. Die Beobachtungen sind im allgemeinen bei klarem Himmel und ruhiger See gemacht worden, und zwar in dem geographischen Bereich zwischen 8 und 17°N und 80 und 95°E während der Ausfahrt der INS Kistna von Madras (80°E, 13°N) nach Port Blair (93°E, 12°N) und auf der Rückreise nach Madras. In den Bereichen des Ozeans, in denen keine örtlichen Pollutionsquellen bestehen, stimmen die gemessenen Werte der Leitfähigkeit und des Potentialgefälles mit den theoretischen Werten überein, die man erhält, wenn man annimmt, dass ein Ionengleichgewicht besteht, dass die schnellen Ionen vorwiegend durch Zusammenstoss mit schnellen Ionen des entgegengesetzten Vorzeichens vernichtet werden, und dass die schnellen Ionen nur durch die kosmische Höhenstrahlung erzeugt werden. Die Werte der Leitfähigkeit stimmen mit denen überein, die man aus theoretischen Überlegungen gewinnt, und auch mit denen, die während der Kreuzfahrten des Forschungsschiffes Carnegie im Indischen Ozean im Jahre 1920 gemessen Küste sind jedoch bedeutsame Abweichungen festzustellen, wo die elektrischen Verhältenisse über dem Ozean durch Pollutionsquellen auf dem Lande beeinflusst werden. Die Leitfähigkeitswerte nahe dem Land sind nur ungefähr halb so gross wie die in der pollutionsfreien Luft des offenen Ozeans-jedoch haben die während der Mess-Jahreszeit vorherrschenden Winde eine Ausbreitung der Pollutionszone auf einen Bereich von 100 bis 200 km von der Küste beschränkt.
  相似文献   

3.
Ocean Dynamics - The present study focuses on the variability of subsurface ocean temperature and associated planetary waves (oceanic Kelvin and Rossby waves) in the Indian Ocean during the boreal...  相似文献   

4.
The iodine content of marine suspended matter obtained from thirteen stations in the Atlantic between 75°N and 55°S has been measured. The concentration of particulate iodine is high in the surface, up to 127 ng/kg of seawater being observed. Below the euphotic zone, it drops sharply to 1–2 ng/kg. The iodine-containing particles are probably biogenic. A simple box-model calculation shows that only 3% of the particulate iodine produced in the surface water may reach the deep sea and that the residence time of these particles in the surface water is about 0.1 year.  相似文献   

5.
We have determined the dry weight of suspended particulate matter in seawater in a section through the western Atlantic Ocean from 75°N to 52°S. The concentrations, operationally defined as that weight retained on 0.6-μm and 0.4-μm pore size Nuclepore filters, contained in 1 kg of seawater, range from 5 to 300 μg/kg and show readily explainable regional features. High concentrations are found in surface waters and in association with radpidly moving bottom waters in the Denmark Straits overflow and in Antarctic bottom waters to 15°S. Low concentrations, <12 μg/kg, characterize the mid-water regions of the sub-tropical gyres. High concentrations are seen in sinking Labrador Sea water and in a plume extending at least a kilometer off the bottom at 35°N–40°N where the cruise track intersects the North Atlantic gyre. It is doubtful whether this important phenomenon could be observed by any means other than through particulate observations, either optical or gravimetric, and this provides a unique insight into the scale of vertical turbulent processes.  相似文献   

6.
Summary The wind and temperature data for three stations, latitudinally separated in the region east of the Indian Ocean, were analysed by spectrum analysis. The study pointed out two types of prominent wave disturbances, one with periodicity of about 5 days and the other of about 8 days. The occurrence of the two types of disturbances is closely associated with the alternating wind regimes of the Quasi-Biennial Oscillation.  相似文献   

7.
226Ra profiles have been measured in the western Indian Ocean as part of the 1977–1978 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10°S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. [15]. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.  相似文献   

8.
热带印度洋增暖对南极平流层极涡的影响   总被引:3,自引:0,他引:3  
李双林 《中国科学D辑》2009,39(6):813-822
过去几十年,在全球变暖的大背景下,全球大部分海洋,特别是热带印度洋,显著增暖.同时,南极平流层极涡呈现发展加深的趋势.以前的模拟结果显示,臭氧耗损的辐射冷却效应是南极极涡加深的主导因子,但模拟的臭氧耗损单独引起的南极极涡加深比实际观测到的要强.这说明有其他因子参与影响了南极极涡的趋势变化,其作用是部分抵消臭氧耗损的影响.是否热带印度洋增暖是其中的因子之一,这个问题还不清楚.利用4个大气环流模式,通过给定理想的、与观测到的强度相当的热带印度洋增暖强迫,进行集合试验,研究了这一问题.结果表明:热带印度洋增暖有利于南半球春、夏季极地平流层增暖、南极极涡减弱,于是倾向于部分抵消臭氧耗损的辐射冷却效应.这一结果能部分解释以前的模拟发现~臭氧耗损单独导致的南极极涡加深比观测到的要强.鉴于平流层变暖不利于极地平流层冰晶云的形成、遂有利于臭氧恢复,现在的结果暗示:在全球变暖的大背景下,气候系统的内部动力调整过程将有利于南极臭氧洞的恢复.  相似文献   

9.
During the past decades, concurrent with global warming, most of global oceans, particularly the tropical Indian Ocean, have become warmer. Meanwhile, the Southern Hemispheric stratospheric polar vortex (SPV) exhibits a deepening trend. Although previous modeling studies reveal that radiative cooling effect of ozone depletion plays a dominant role in causing the deepening of SPV, the simulated ozone-depletion-induced SPV deepening is stronger than the observed. This suggests that there must be other factors canceling a fraction of the influence of the ozone depletion. Whether the tropical Indian Ocean warming (IOW) is such a factor is unclear. This issue is addressed by conducting ensemble atmospheric general circulation model (AGCM) experiments. And one idealized IOW with the amplitude as the observed is prescribed to force four AGCMs. The results show that the IOW tends to warm the southern polar stratosphere, and thus weakens SPV in austral spring to summer. Hence, it offsets a fraction of the effect of the ozone depletion. This implies that global warming will favor ozone recovery, since a warmer southern polar stratosphere is un-beneficial for the formation of polar stratospheric clouds (PSCs), which is a key factor to ozone depletion chemical reactions. Supported by National Natural Science Foundation of China (Grant Nos. 40775053 and 90711004), National Basic Research Program of China (Grant No. 2009CB421401), and Innovation Key Program of Chinese Academy of Sciences (Grant Nos. KZCXZ-YW-Q11-03, KZCZ2-YW-Q03-08)  相似文献   

10.
Proportions of the overland, delayed, and groundwater runoff are given for different phases of the hydrological regimes of rivers under different landscape–climate conditions in Russia. The concept of runoff hydrological regime is in agreement with the formation features of the annual and seasonal runoff on small watersheds under current climate conditions. The increase in winter runoff is due to the impulse discharge regime of soil water and groundwater, which receive additional recharge during frequent thaws and at weak freezing of the aeration zone. Variations in the values of runoff, total precipitation, and mean temperature were shown to be both synchronous and periodic.  相似文献   

11.
As part of Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), cruise-based measurements of near-surface CO were carried out over Bay of Bengal (BoB) covering the latitude–longitude sector 3.5°N–21.0°N and 76.0°E–98.0°E, during winter months of December 2008 to January 2009. These in-situ measured CO mixing ratio varied in the range of 80–480 ppbv over this marine environment with the distinct spatial pattern. The highest mixing ratios were measured over southeast-BoB with mean value of 379±58 ppbv. CO mixing ratios were high over north-BoB compared to southern BoB. These in-situ measurements were compared with the satellite-measured surface CO obtained from Measurements of Pollution in the Troposphere (MOPITT) onboard TERRA and found to be in good agreement over most of the regions, except at southeast-BoB. Surface CO and column CO from MOPITT data showed a similar spatial pattern. Based on the analysis of airmass back-trajectories, satellite-based spatial map of CO distribution over Asian region and Potential Source Contribution Function analysis, different pathways of transport of CO were identified. Transport from northern landmass as well as from south-east Asia has a significant influence in the spatial variation of CO over BoB. Winter-time mixing ratio of CO was found to be higher compared to those measured during other campaigns conducted during February–March 1999, 2001 (pre-monsoon) and September–October, 2002 (post-monsoon).  相似文献   

12.
13.
Variability in water-exchange time between Tokyo Bay and the Pacific Ocean during winter is investigated based on the results of intensive field observation from November 2000 to March 2001. Water-exchange time between Tokyo Bay and the Pacific Ocean during winter mainly depends on the strength of northerly monsoon, being about 16 days under the weak monsoon and about 12 days under the strong monsoon. Moreover, it becomes longer by about 1 day in spring tide and shorter in neap tide due to the coupling effect of estuarine circulation and vertical mixing. Water-exchange time also varies depending on the open-ocean condition. When the warm water mass approaches from the Pacific Ocean to the mouth of Tokyo Bay through the eastern channel of Sagami Bay, which connects Tokyo Bay and the Pacific Ocean, water-exchange time becomes longer by about 2 days because the warm water mass is blocked in the surface layer at the bay mouth. On the other hand, when the warm water mass approaches to the mouth of Tokyo Bay through the western channel of Sagami Bay, water-exchange time becomes shorter by about 1 day because the warm water mass intrudes into the middle or lower layers of Tokyo Bay. Such different behavior of warm water mass at the mouth of Tokyo Bay is due to the difference in density of approaching warm water masses, that is, the density of the warm water mass through the eastern channel is smaller than that of the warm water mass through the western channel of Sagami Bay.Responsible Editors: Yens Kappenberg  相似文献   

14.
Six sets of electrochemical ozonesondes along with radiosondes were launched during 11–29 December 2004 from Kanpur (26.03N, 80.04E). Large variabilities in the vertical distribution of ozone have been observed during the campaign period. Higher ozone levels as compared to the average of all the profiles during this period have been observed in the height ranges of 3–7 and 10–18 km on December 18 and 25, respectively. Ozone levels in the 11–14 km range were observed to be much lower on December 29. These events have been analyzed in detail using meteorological parameters, back trajectories and potential vorticity. Higher ozone on December 18 may be associated with lateral transport from Africa and Gulf countries, where higher CO had been observed along the trajectory path. However, on December 25, enhanced ozone layers could be associated with transport from the stratosphere. Potential vorticity data suggest that a jet stream from midlatitude was approaching this location along the isentropic surface (350 K) towards the southeast direction. The lower ozone observed on December 29 originated from the marine region near the equator. These sharp changes in this period reflecting changing meteorology have given evidence of transport of ozone from different regions including stratospheric intrusion.  相似文献   

15.
Ocean Dynamics - Spiciness anomalies generated in the salinity maxima region are important for several atmospheric and oceanic factors as they move along the geostrophic pathways towards the...  相似文献   

16.
The present study is an attempt to examine the variability of convective activity over the north Indian Ocean (Bay of Bengal and Arabian Sea) on interannual and longer time scale and its association with the rainfall activity over the four different homogeneous regions of India (viz., northeast India, northwest India, central India and south peninsular India) during the monsoon season from June to September (JJAS) for the 26 year period (1979 to 2004). The monthly mean Outgoing Long-wave Radiation (OLR) data obtained from National Oceanic and Atmospheric Administration (NOAA) polar orbiting spacecraft are used in this study and the 26-year period has been divided into two periods of 13 years each with period-i from 1979 to 1991 and period -ii from 1992 to 2004. It is ascertained that the convective activity increases over the Arabian Sea and the Bay of Bengal in the recent period (period -ii; 1992 to 2004) compared to that of the former period (period -i; 1979 to 1991) during JJAS and is associated with a significantly increasing trend (at 95% level) of convective activity over the north Bay of Bengal (NBAY). On a monthly scale, July and August also show increase in convective activity over the Arabian Sea and the Bay of Bengal during the recent period and this is associated with slight changes in the monsoon activity cycle over India. The increase in convective activity particularly over the Arabian Sea during the recent period of June is basically associated with about three days early onset of the monsoon over Delhi and relatively faster progress of the monsoon northward from the southern tip of India. Over the homogeneous regions of India the correlation coefficient (CC) of OLR anomalies over the south Arabian Sea (SARA) is highly significant with the rainfall over central India, south peninsular India and northwest India, and for the north Arabian Sea (NARA), it is significant with northwest India rainfall and south peninsular rainfall. Similarly, the OLR anomalies over the south Bay of Bengal (SBAY) have significant CC with northwest India and south peninsular rainfall, whereas the most active convective region of the NBAY is not significantly correlated with rainfall over India. It is also found that the region over northeastern parts of India and its surroundings has a negative correlation with the OLR anomalies over the NARA and is associated with an anomalous sinking (rising) motion over the northeastern parts of India during the years of increase (decrease) of convective activity over the NARA.  相似文献   

17.
Houben GJ 《Ground water》2006,44(5):668-675
In many cases, the operation of wells is hampered by the formation of mineral incrustations. From field studies, it is known that the distribution of incrustations in wells is quite inhomogeneous. Flow models were calculated to assess the hydraulic background of this phenomenon. For horizontal flow, the screen section facing the natural flow direction receives the majority of the total inflow. This phenomenon increases with increasing natural gradients of flow. The vertical distribution of water intake is also quite inhomogeneous. In partially penetrating wells, the uppermost part of the screen receives much more inflow than the deeper screen sections. These flow inhomogenities involve elevated flow velocities and may cause increased influx of shallow, oxygenated water, all conditions favorable for incrustation growth. Field investigations on incrusting wells clearly show that the identified screen areas of elevated flow are indeed much more prone to incrustation deposition. Such sections require more attention during rehabilitations. A suction flow control device can help to homogenize the inflow but can cause elevated entrance loss when affected by incrustation buildup itself.  相似文献   

18.
2007-2008年对千岛湖水体中5个采样点(S1,S3,S4,S8,S9)的总氮、总磷、三态氮、溶解性总磷和可溶性活性磷等进行了不同深度的逐月监测,以研究探讨千岛湖营养盐的时空分布格局.结果表明,两年间总磷、总氮和硝酸盐氮浓度都呈现从上游(S1)至下游(S9)逐渐下降的趋势;2007-2008年汛期(3-7月)位于千岛湖上游新安江干流段的样点S1各种营养盐均为全年最高.但是2007年与2008年营养盐时空分布差异显著.2008年汛期(3-7月),S1的总磷和总氮浓度分别极显著低于和高于2007年同期.相对于2007年,虽然2008年具有更高的温度,但没有增强水体热稳定性.2008年强对流天气一方面通过打破水体热分层和促进水体混合,另一方面通过雨水带来大量的地表营养盐来影响营养盐的分布.汛期高浓度的总磷在1-2个月内平均降低64.4%,最大降低88.6%,显示千岛湖生态系统具有较强的净化能力.分析结果显示千岛湖营养盐时空分布总体格局是由水文、生物以及人类活动等各种因素之间的相互作用所产生的综合效应而形成的,而极端天气能够改变这一格局.  相似文献   

19.
本文分析了夏季西北太平洋大气环流异常特征及其与海温变化的关系,发现夏季西北太平洋异常反气旋/气旋(WNPAC/WNPC)是西北太平洋地区对流层中低层存在的重要大气环流异常现象,与东亚—西北太平洋低纬度至高纬度的经向PJ波列及欧亚中高纬度东西纬向波列的变化有关,通过与中高纬度环流变化的联系,对东亚及欧亚中高纬度气候有重要影响.夏季WNPAC/WNPC与热带海温变化的关系存在明显的不对称性,显著的WNPAC一般出现在El Niño衰减年夏季,与前期El Niño成熟年冬季的赤道东太平洋暖海温异常和El Niño衰减年春夏季印度洋海盆尺度的暖海温异常有明显的正相关关系,进一步表明了WNPAC在El Niño事件影响夏季气候中的重要桥梁作用;而夏季显著的WNPC与前期和同期热带海温变化的关系存在明显的不确定性,主要与夏季热带印度洋和赤道中东太平洋之间东暖西冷的热力差异异常引起的孟加拉湾—赤道西太平洋西风异常有关.进一步分析WNPAC/WNPC与海温变化关系不对称的可能原因,发现El Niño和La Niña衰减年夏季热带印度洋和太平洋海温变化所引起的印—太之间海温(热力)差异的一致性特征可能是导致WNPAC/WNPC与海温变化关系不对称的主要原因.  相似文献   

20.
The altitude profiles of particulate extinction in the upper troposphere and lower stratosphere (UTLS) obtained from SAGE-II in the latitude region 0–30°N over the Indian longitude sector (70–90°E) are used to study the latitudinal variation of its annual pattern in this region during the volcanically quiescent period of 1998–2003. The SAGE-II data is compared with the lidar measurements from Gadanki (13.5°N, 79.2°E) when the satellite had an overhead occultation pass over a small geographical grid centered at this location. The particulate optical depth (τp) in the UT region shows a general decrease with increase in latitude and a pronounced summer–winter contrast with relatively low values during winter and high values during summer. In general, these variations are in accordance with the latitudinal variation of convective available potential energy (CAPE) and thunderstorm activity, which are good representative indices of tropospheric convection. While the particulate extinction (and τp) in the 18–21 km (LS1) region is relatively low in the equatorial region up to 15°N, it shows an increase in the off-equatorial region, beyond 15°N. While the annual variation of τp in the LS1 region is almost insignificant near the equator, it is rather well pronounced in latitude region between 10 and 15°N with relatively high values during winter and low values during summer. Beyond 20°N, this shows a prominent peak during summer. At a higher altitude, the 21–30 km (LS2) region, the latitude variation of τp shows a different pattern with high values near the equator and low values in the off-equatorial region confirming the existence of a stratospheric aerosol reservoir. Low values of τp at lower regime (LS1) near the equator could be due to rapid transport of particulates from the near equatorial region to higher latitudes, while the equatorial high at upper regime (LS2) could be due to lofting and subsequent accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号