首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
利用中科院国家空间科学中心廊坊观测站(40.0° N,116.3° E)钠荧光多普勒激光雷达观测数据对钠原子的重力波输送和湍流输送进行分析,利用流星雷达观测数据对钠原子的环流输送进行分析,结果显示重力波动力学输送、重力波化学输送、湍流混合输送及环流输送对钠原子输送贡献的量级相当.其中重力波动力学输送在85~100 km整体为负向,在90~95 km占主要地位的平均输送速度为-3.1 cm·s-1;重力波化学输送在85~94 km为正向,94~100 km基本为负向,在85~90 km占主要地位的平均输送速度为3.3 cm·s-1;湍流混合输送在85~95 km为负向,95~100 km为正向,在85~90 km占主要地位的平均输送速度为-4.9 cm·s-1;85~100 km环流输送整体为正向,平均输送速度为1 cm·s-1.88~95 km四种动力学输送产生的平均合速度为-1 cm·s-1,负向的垂直输送特征对钠原子"源""汇"平衡十分重要.本文结果可为不同大气圈层之间重力波产生的能量物质交换机制研究和圈层之间的耦合过程研究提供观测事实参考,为大气化学成分的垂直输送机制建模提供参数化依据.  相似文献   

2.
This paper studies the effect of photochemistry on the gravity wave instability in summer polar mesopause region. The calculation method of the effects of eddy viscosity, conductivity and eddy diffusion of chemical species on the gravity wave instability induced by photochemistry are studied. The critical wavelength of the instability is given in this paper. The influences of some parameters on it are discussed. The study shows that the gravity wave instability induced by photochemistry is sensitive to the temperature and atomic oxygen profiles.  相似文献   

3.
A review of the important constraints on gravity wave induced diffusion of chemical tracers, heat, and momentum is given. Ground-based microwave spectroscopy measurements of H2O and CO and rocket-based mass spectrometer measurements of Ar constrain the eddy diffusion coefficient for constituent transport (K zz ) to be (1–3)×105 cm2s–1 in the upper mesosphere. Atomic oxygen data also limitsK zz to a comparable value at the mesopause. From the energy balance of the upper mesosphere the eddy diffusion coefficient for heat transport (D H ) is, at most 6×105 cm2s–1 at the mesopause and decreasing substantially with decreasing altitude. The available evidence for mean wind deceleration and the corresponding eddy diffusion coefficient for momentum stresses (D M ) suggests that it is at least 1×106 cm2s–1, in the upper mesosphere. Consequently the eddy Prandtl number for macroscopic scale lengths is >3.  相似文献   

4.
A mathematical model of the middle and high latitude ionosphere   总被引:5,自引:0,他引:5  
  相似文献   

5.
The influence of gravity waves on photochemical heating in the mesopause region is studied in this paper. The results indicate that gravity waves can cause a loss of photochemical heating in the region of the mesopause. The influences of the variation of background temperature and of atomic oxygen density on the loss of photochemical heating induced by gravity waves are discussed. The results indicate that, as background temperature decreases, or as the background atomic oxygen density increases, the gravity wave induced loss of photochemical heating increases and the ratio between it and the background photochemical heating rate also increases.  相似文献   

6.
利用中国科学院国家空间科学中心廊坊站(40.0°N,116.3°E)钠荧光多普勒激光雷达2011年至2013年共约82 h的钠原子数密度和垂直风观测数据,分析了廊坊地区中间层顶区域大气重力波耗散引起的钠原子输送特征.分析得到,90~100km处重力波耗散引起的平均钠原子垂直通量整体为负,钠原子向下输送,在93 km处达到最大负值-1.47×10~8m~(-3)m·s~(-1),85~90km处平均钠原子垂直通量为正,钠原子向上输送,但通量值随高度递减.钠原子垂直通量方向在90km处发生转变,垂直通量随高度的变化造成钠原子汇聚,汇聚效应引起的平均钠原子产生率最大值在91km处达到了1.40×10~8m~(-3)/h,该值超过了相同高度上模式计算流星烧蚀注入引起的钠原子产生率峰值,说明重力波耗散对钠层结构的形成具有重要影响.与美国SOR和Maui观测结果相比,平均钠原子产生率峰值大小相近,但出现高度不同,说明大气重力波耗散引起的物质输送具有显著的地域变化特征.研究结果可为大气物质输送理论的完善以及大气金属层物理模式的改进提供观测事实参考.  相似文献   

7.
The seasonal dependences of the response of the hydroxyl ((6–2) band) and molecular oxygen O2(b 1Σ g + ) ((0–1) band) emission intensities, temperature, and density indicator in the region of the hydroxyl emission maximum (87 km) to solar activity have been obtained based on the spectral observations of the mesopause emissions at Zvenigorod observatory during 2000–2007. The ratio of the OH (7–3) and (9–4) band intensities, characterizing the behavior of the vibrational temperature, has been used as an indicator of density. It has been established that the response of the studied mesopause characteristics to solar activity is positive in all seasons. In winter the response is maximal in the intensities and temperature and is minimal in the density indicator. The main mechanisms by which solar activity affects the mesopause characteristics have been considered. The behavior of the internal gravity waves with periods of 0.33–7 h depending on solar activity has been studied. It has been noted that these waves become more active at a minimum of the 11-year solar cycle.  相似文献   

8.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   

9.
In this paper we consider a vertical wavenumber spectrum of vertically propagating gravity waves impinging on a rapid increase in atmospheric stability. If the high-wavenumber range is saturated below the increase, as is usually observed, then the compression of vertical scales as the waves enter a region of higher stability results in that range becoming supersaturated, that is, the spectral amplitude becomes larger than the saturation limit. The supersaturated wave energy must then dissipate in a vertical distance of the order of a wavelength, resulting in an enhanced turbulent energy dissipation rate. If the wave spectrum is azimuthally anisotropic, the dissipation also results in an enhanced vertical divergence of the vertical flux of horizontal momentum and enhanced wave drag in the same region. Estimates of the enhanced dissipation rates and radar reflectivities appear to be consistent with the enhancements observed near the high-latitude summer mesopause. Estimates of the enhanced mean flow acceleration appear to be consistent with the wave drag that is needed near the tropopause and the high-latitude summer mesopause in large-scale models of the atmosphere. Thus, this process may play a significant role in determining the global effects of gravity waves on the large-scale circulation.  相似文献   

10.
Summary Over the shield region of Northern Sweden, the Geological Survey runs a low altitude (30 m) aeromagnetic survey and regional gravity surveys cover almost the same areas. The production of detailed geological maps would be almost impossible without these geophysical measurements. To enhance their interpretation, a study of the appropriate petrophysical properties was started by measurements of density, susceptibility and remanence on all rock specimens collected by field geologists. Up to now more than 30,000 specimens have been measured and almost as many in situ susceptibility determinations have been made. About 10% of the samples are oriented. The information obtained is useful not only for the direct interpretation of geophysical surveys but also reflects the effects of various geological processes acting during and after the formation of the rocks considered.In precambrian rocks, density is obviously closely correlated to mineral composition and thus to chemical composition. This is demonstrated for igneous rocks by the correlation trends between density and SiO2-content and the CM/AF-index.Susceptibility mainly reflects the magnetite content of rocks. As magnetite is an accessory mineral it is seldom considered by geologists. However, a closer study of the magnetic susceptibility of rocks reveals that its extreme complexity reflects the effects of primary and secondary geological processes. The susceptibility spectrum of a certain rock may prove to be a useful classification tool — at least regarding intermediate and basic igneous rocks.The combination of the physical parameters density and susceptibility in 2-dimensional frequency distributions seems to be a promising approach to the understanding of certain petrological processes and makes possible the delineation of local or regional secondary processes. Magmatic differentiation and serpentinization can be demonstrated in this manner.Remanent magnetization plays a secondary role in the majority of precambrian rocks. Still there are places where the natural remanence dominates and shows pronounced directions deviating from today's magnetic field. So far we have only one case where a follow up by demagnetization has been attempted, but intensified paleomagnetic research should most certainly add to our understanding of precambrian geology.Combination of susceptibility and remanance shows some characteristic correlations for highly remanent rocks, reflecting mainly exosolution phenomena among magnetic opaques and grain size distributions. Even these features might be used as diagnostic or classifying tools. They also explain some of the diversity of susceptibility spectra.  相似文献   

11.
Methane (CH4) is a potent greenhouse gas that is emitted from paddy fields, and the large CH4 fluxes represent a worldwide issue for the rice production eco-compatibility. In this work a model is proposed to investigate the role of water flows on CH4 emissions from flooded paddy soils. The model is based on a system of partial differential mass balance equations of the chemical species affecting CH4 fate, and water flows are modeled by the Darcy equation. Moreover, in order to properly model the dynamics of CH4, a number of physico-chemical processes and features not included in currently available CH4 emission models are considered: paddy soil stratigraphy; nutrient adsorption and root water uptake; gas transport and respiration within root aerenchyma compartment. The proposed model allows to simulate the spatio-temporal dynamics of chemical compounds within paddy soil as well as to quantify the influence of different processes on nutrient input/output budgets. Simulations without water flow have shown a considerable overestimation of CH4 emissions due to a different spatio-temporal dynamics of dissolved organic matter (DOC – source of energy for CH4 production). In particular, when water fluxes have not been modeled the overestimation can reach 54%, 41% and 67% of daily minimum, daily maximum, and total over the whole growing season CH4 emission, respectively. Moreover, the model results suggest that roots influence CH4 dynamics principally due to their nutrient uptake, while root effect on advective flow plays a minor role. Finally, the analysis of CH4 transport fluxes has shown the limiting effect of upward dispersive transport fluxes on the downward CH4 percolation.  相似文献   

12.
Soil depth and soil production are highly complicated phenomena, generated from a complex interaction of physical, biological and chemical processes. It has, nevertheless, become increasingly clear that soil formation rates are closely related to chemical weathering rates. Somewhat paradoxically, it is likewise becoming apparent that such biogeochemical reactions as slowly transform rock to soil are limited by physical processes, such as flowing water and the formation of fractures. We have formulated a theoretical approach that relates soil formation rates to chemical weathering rates, and those, likewise, to solute transport rates. For such a theoretical framework to be relevant, the solute transport rates cannot equal those of the flowing water, as is the case in Gaussian solute transport. Rather, solute transport must be slowed in accordance with heavy‐tailed solute arrival time distributions. The inference is that the traditional advection–dispersion equation formulation for solute transport is inadequate in the typically heterogeneous geological media that weather to form soils. Here we examine the implications of this soil production model on the assumption of the approach to steady state. Particularly at slow erosion rates we find that many soil columns are not in equilibrium. This tendency may be accentuated in dry climates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
We present results from the Numerical Spectral Model (NSM), which focus on the temperature environment of the mesopause region where polar mesospheric clouds (PMC) form. The PMC occur in summer and are observed varying on time scales from months to years, and the NSM describes the dynamical processes that can generate the temperature variations involved. The NSM simulates the quasi-biennial oscillation (QBO), which dominates the zonal circulation of the lower stratosphere at equatorial latitudes. The modeled QBO extends into the upper mesosphere, due to gravity wave (GW) filtering, consistent with UARS zonal wind and TIMED temperature measurements. While the QBO zonal winds are confined to equatorial latitudes, the associated temperature variations extend to high latitudes. The meridional circulation redistributes the QBO energy—and the resulting temperature oscillations away from the equator produce inter-annual variations that can exceed 5 K in the polar mesopause region, with considerable differences between the two hemispheres. The NSM shows that the 30-month QBO produces a 5-year or semi-decadal (SD) oscillation, and stratospheric NCEP data provide observational evidence for that. This SD oscillation extends in the temperature to the upper mesosphere, where it could contribute to the long-term variations of the region.  相似文献   

14.
重力波、中性风场、电场是激发电离层扩展F的主要影响因子,本文基于中低纬电离层扩展F发展的物理模型,通过电场强度、背景风场对扩展F影响作用的分析和经验对比,首先验证了模型的有效性,后借助该模型数值模拟了给定背景环境下三种尺度初始电子密度扰动条件下扩展F的发展情况,同时研究了利用化学物质释放实现一定尺度扰动,进而激发扩展F的过程.结果表明,较强的背景电场、东向风场有利于扩展F的形成和抬升,与经验结论相吻合;电离层从被作用初始扰动到激发扩展F的过程中存在拐点效应,拐点之后扩展F被激发形成并且抬升迅速,同时短波长扰动相对于长波长扰动更有利于扩展F的激发和发展;化学物质H_2O释放通过耗散电子密度,形成了一定尺度扰动并诱发了扩展F的形成,该方法可作为一种人工激发扩展F的探索手段.  相似文献   

15.
Summary The nature and the role of gravity waves in the troposphere is briefly discussed and reviewed. After describing some basic properties of gravity waves and their generation mechanisms, we analyze their ability to influence phase changes, trigger and organize convective cells, to produce and interact with turbulence, and to affect diffusive processes in the atmosphere. Throughout, the emphasis is placed on the physical processes involved in the interaction of gravity waves with mesoscale and planetary boundary layer phenomena. Also discussed and reviewed are those remote sensing devices which are particularly useful in revealing and measuring such waves. Finally, an attempt is made to outline possible lines of future work for the purpose of fully understanding the role of gravity waves in mesoscale and microscale dynamics.  相似文献   

16.
Variability of interrill erosion at low slopes   总被引:2,自引:0,他引:2  
Numerous models and risk assessments have been developed in order to estimate soil erosion from agricultural land, with some including estimates of nutrient and contaminant transfer. Many of these models have a slope term as a control over particle transfer, with increased transfer associated with increased slopes. This is based on data collected over a wide range of slopes and using relatively small soil flumes and physical principals, i.e. the role of gravity in splash transport and flow. This study uses laboratory rainfall simulation on a large soil flume to investigate interrill soil erosion of a silt loam under a rainfall intensity of 47 mm h?1 on 3%, 6% and 9% slopes, which are representative of agricultural land in much of northwest Europe. The results show: (1) wide variation in runoff and sediment concentration data from replicate experiments, which indicates the complexities in interrill soil erosion processes; and (2) that at low slopes processes related to surface area connectivity, soil saturation, flow patterns and water depth may dominant over those related to gravity. Consequently, this questions the use of risk assessments and soil erosion models with a dominant slope term when assessing soil erosion from agricultural land at low slopes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Despite substantial progress in atmospheric modeling, the agreement of the simulated atmospheric response to decadal scale solar variability with the solar signal in different atmospheric quantities obtained from the statistical analysis of the observations cannot be qualified as successful. An alternative way to validate the simulated solar signal is to compare the sensitivity of the model to the solar irradiance variability on shorter time scales. To study atmospheric response to the 28-day solar rotation cycle, we used the chemistry–climate model SOCOL that represents the main physical–chemical processes in the atmosphere from the ground up to the mesopause. An ensemble simulation has been carried out, which is comprised of nine 1-year long runs, driven by the spectral solar irradiance prescribed on a daily basis using UARS SUSIM measurements for the year 1992. The correlation of zonal mean hydroxyl, ozone and temperature averaged over the tropics with solar irradiance time series have been analyzed. The hydroxyl has robust correlations with solar irradiance in the upper stratosphere and mesosphere, because the hydroxyl concentration is defined mostly by the photolysis. The simulated sensitivity of the hydroxyl to the solar irradiance changes is in good agreement with previous estimations. The ozone and temperature correlations are more complicated because their behavior depends on non-linear dynamics and transport in the atmosphere. The model simulates marginally significant ozone response to the solar irradiance variability during the Sun rotation cycle, but the simulated temperature response is not robust. The physical nature of this is not clear yet. It seems likely that the temperature (and partly the ozone) daily fields possess their own internal variability, which is not stable and can differ from year to year reflecting different dynamical states of the system.  相似文献   

18.
中层顶区Na原子分布昼夜变化的模拟研究   总被引:3,自引:0,他引:3       下载免费PDF全文
Na原子可以作为大气动力学过程(如潮汐波、重力波等)的示踪剂,因而对Na层的探测研究成为研究中层顶区的重要手段. 本文建立了时变的中高层大气光化学模式,并与国际电离层模式 (IRI 95) 与Na层光化学理论相结合,建立完整时变的中高层大气Na层光化学模式,着重研究Na层分布的昼夜变化. 计算结果表明,在Na原子分布的峰值附近,Na层不出现大的昼夜变化,而在Na层的上部和下部,Na原子密度存在明显的昼夜变化. 这些特性与实际的观测结果比较一致.  相似文献   

19.
A numerical model has been developed which is capable of simulating all phases of the life cycle of metallic ions, and results are described and interpreted herein for the typical case of Fe+ ions. This cycle begins with the initial deposition of metallics through meteor ablation and sputtering, followed by conversion of neutral Fe atoms to ions through photoionization and charge exchange with ambient ions. Global transport arising from daytime electric fields and poleward/downward diffusion along geomagnetic field lines, localized transport and layer formation through descending convergent nulls in the thermospheric wind field, and finally annihilation by chemical neutralization and compound formation are treated. The model thus sheds new light on the interdependencies of the physical and chemical processes affecting atmospheric metallics. Model output analysis confirms the dominant role of both global and local transport to the ions life cycle, showing that upward forcing from the equatorial electric field is critical to global movement, and that diurnal and semidiurnal tidal winds are responsible for the formation of dense ion layers in the 90–250 km height region. It is demonstrated that the assumed combination of sources, chemical sinks, and transport mechanisms actually produces F-region densities and E-region layer densities similar to those observed. The model also shows that zonal and meridional winds and electric fields each play distinct roles in local transport, whereas the ion distribution is relatively insensitive to reasonable variations in meteoric deposition and chemical reaction rates.  相似文献   

20.
With the rapid growth of nanotechnology industry, nanomaterials as an emerging pollutant are gradually released into subsurface environments and become great concerns. Simulating the transport of nanomaterials in groundwater is an important approach to investigate and predict the impact of nanomaterials on subsurface environments. Currently, a number of transport models are used to simulate this process, and the outputs of these models could be inconsistent with each other due to conceptual model uncertainty. However, the performances of different models on simulating nanoparticles transport in groundwater are rarely assessed in Bayesian framework in previous researches, and these will be the primary objective of this study. A porous media column experiment is conducted to observe the transport of Titanium Dioxide Nanoparticles (nano-TiO2). Ten typical transport models which consider different chemical reaction processes are used to simulate the transport of nano-TiO2, and the observed nano-TiO2 breakthrough curves data are used to calibrate these models. For each transport model, the parameter uncertainty is evaluated using Markov Chain Monte Carlo, and the DREAM(ZS) algorithm is used to sample parameter probability space. Moreover, the Bayesian model averaging (BMA) method is used to incorporate the conceptual model uncertainty arising from different chemical reaction based transport models. The results indicate that both two-sites and nonequilibrium sorption models can well reproduce the retention of nano-TiO2 transport in porous media. The linear equilibrium sorption isotherm, first-order degradation, and mobile-immobile models fail to describe the nano-TiO2 retention and transport. The BMA method could instead provide more reliable estimations of the predictive uncertainty compared to that using a single model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号