首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Neutral winds in the lower thermosphere (95–130km) measured during the March equinox period (1991–1992) by ground-based incoherent scatter radars at Arecibo (18°N), Millstone Hill (42.5°N), and Sondrestrom (67°N) and by the space-based wind imaging interferometer (WINDII) are compared and show overall good agreement but some differences. At 18°N, the wind field in the altitude region of 95–110km displays prevailing upward propagating diurnal tides with wavelengths of about 22km. The diurnal structure is affected by the semidiurnal tide resulting in regular minima separated by 11–12h. At altitudes above 110km, the diurnal tide dominant wind structure changes to the semidiurnal tide dominant structure as illustrated clearly by WINDII data with 24h coverage. Winds at 42.5°N and 67°N show similar structures in which winds at 105–115km are generally anti-sunward. Daytime ISR winds show prevailing upward propagating semidiurnal tides with wavelengths of 35–70km. Winds from WINDII reveal the existence of the in situ thermospheric diurnal tide with amplitudes comparable to those of the semidiurnal tide. The superimposition of the two tides result in a wind field stronger during daytime than during nighttime at mid- and high-latitudes. Geomagnetic influence on neutral winds is negligible at low- and mid-latitudes under solar quiet conditions, but is observed at high-latitudes, where wind vectors follow a clockwise one-cell pattern at altitudes above about 118km in geomagnetic coordinates. Most recent simulations for the three latitudes provided by the NCAR thermosphere/ionosphere/mesosphere electrodynamics general circulation model are compared to the observations. The results at low- and mid-latitudes agree well with the observed winds in both wind structures and magnitudes, and reveal details of wave transition. Simulations for high-latitudes are less satisfactory, and require further improvements.  相似文献   

19.
A unified picture of plasma irregularities in equatorial spread F is developed from the analysis of satellite, sounding rocket, and coherent scatter radar observations. The coherent scatter data are analyzed using a new in-beam radar imaging technique that permits direct comparison between radar data, in situ data, and computer simulations of the irregularities. Three varieties of irregularities, all produced by ionospheric interchange instabilities, are found to occur. Thin bottom-type layers are composed of waves with primary transverse wavelengths less than about 1 km and with significant parallel wavenumbers. These exist on magnetic flux tubes controlled by the E region dynamo and drift westward in the postsunset ionosphere. A nonlocal analysis is used to calculate their linear growth rate. When the F region dynamo takes control of the flux tube, bottomside irregularities can emerge. These are more robust irregularities with longer primary wavelengths and which exhibit greater vertical development. Nonlinear analyses explain the appearance of steepened structures in rocket observations and solitary waves in satellite observations of bottomside layers. The one-dimensional spectra of these irregularities obey power laws but are anisotropic and have variable spectral indices and spectral breaks. Very strong polarization electric fields can eject large regions of deeply depleted plasma through the F peak and form topside irregularities. Theoretical calculations supported by satellite data show that ion inertia may become important for topside irregularities. The one-dimensional spectra of irregularities in the inertial regime obey a k−5/3 power law, but strong plasma inhomogeneity implies that Kolmogorov weak turbulence is not the explanation. Topside depletions are shown to bifurcate and also to pinch off from the bottomside.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号