首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
For the first time, a dedicated release of the hydrology and water use model WaterGAP3, has been developed to spatially explicit calculate hydrological fluxes within river basins draining into the Mediterranean and Black Sea. The main differences between the new regional version of the global WaterGAP3 model and the previously applied global version WaterGAP2 can be found in the spatial resolution, snow modeling, and water use modeling. Comparison with observations shows that WaterGAP3 features a more realistic representation of modeled river runoff and inflow into both seas. WaterGAP3 generates more inflow to both seas than WaterGAP2. In the WaterGAP3 simulation, contributions to the total runoff into the Black Sea from individual discharge regions show in general a good agreement to climatology derived runoff, but lesser importance of Georgian rivers for the basin's water. After the successful model validation WaterGAP3 has been applied to correct estimates of seawater mass derived from the GRACE gravity mission and to account for freshwater inflow into both basins. The performance of the WaterGAP3 regional solution has been evaluated by comparing the seawater mass derived from GRACE corrected for the leakage of continental hydrology, to an independent estimate derived from steric-corrected satellite altimetry with steric correction from regional oceanographic models. The agreement is higher in the Mediterranean Sea than in the Black Sea. Results using WaterGAP3 and WaterGAP2 are not significantly different. However the agreement with the altimetry-derived results is higher using WaterGAP2, due to the smaller annual amplitude of the continental hydrology leakage from WaterGAP3. We conclude that the regional model WaterGAP3 is capable of realistically quantifying water mass variation in the region, further developments have been identified.  相似文献   

2.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

3.
《Journal of Geodynamics》2010,49(3-5):166-171
The gravimetric time series achieved from the combination of superconducting and absolute gravimeters are characterized by highest precision and long-term stability. If the effects of Earth and ocean tides, atmosphere and polar motion are removed, the residual curve is dominated by hydrological mass variations. A major source of these variations is water storage changes in the vicinity of the sensor. However, global variations contribute to the signal significantly. For three stations of superconducting gravimeters, a comparison of the principal components obtained from the residual gravity curve on the one hand and continental water storage from the WaterGAP Global Hydrological Model (WGHM) on the other hand is carried out. The results demonstrate a coherence of seasonal variations but a difference in the contribution of the local zone at the individual stations, which point out the need for a careful and site-specific examination of local effects.  相似文献   

4.
Abstract

New global models provide the opportunity to generate quantitative information about the world water situation. Here the WaterGAP 2 model is used to compute globally comprehensive estimates about water availability, water withdrawals, and other indicators on the river-basin scale. In applying the model to the current global water situation, it was found that about 24% of world river basin area has a withdrawal to availability ratio greater than 0.4, which some experts consider to be a rough indication of “severe water stress”; the impacts of this stress are expected to be stronger in developing countries than in industrialized ones. Under a “business-as-usual” scenario of continuing demographic, economic and technological trends up to 2025, water withdrawals are expected to stabilize or decrease in 41% of world river basin areas because of the saturation of water needs and improvement in water-use efficiency. Withdrawals grow elsewhere because population and economic growth will lead to rising demand for water, and this outweighs the assumed improvements in water-use efficiency. An uncertainty analysis showed that the uncertainty of these estimates is likely to have a strong geographic variability.  相似文献   

5.
Abstract

The effect of using two distributed hydrological models with different degrees of spatial aggregation on the assessment of climate change impact on river runoff was investigated. Analyses were conducted in the Narew River basin situated in northeast Poland using a global hydrological model (WaterGAP) and a catchment-scale hydrological model (SWAT). Climate change was represented in both models by projected changes in monthly temperature and precipitation between the period 2040–2069 and the baseline period, resulting from two general circulation models: IPSL-CM4 and MIROC3.2, both coupled with the SRES A2 emissions scenario. The degree of consistency between the global and the catchment model was very high for mean annual runoff, and medium for indicators of high and low runoff. It was observed that SWAT generally suggests changes of larger magnitude than WaterGAP for both climate models, but SWAT and WaterGAP were consistent as regards the direction of change in monthly runoff. The results indicate that a global model can be used in Central and Eastern European lowlands to identify hot-spots where a catchment-scale model should be applied to evaluate, e.g. the effectiveness of management options.

Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Piniewski, M., Voss, F., Bärlund, I., Okruszko, T., and Kundzewicz. Z.W., 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal, 58 (4), 737–754.  相似文献   

6.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

7.
All river engineering schemes require flood discharge estimates as part of the design and appraisal process. Unfortunately, continuous measurement of flood discharges is limited to those river sites with instrumented gauging stations, which constitute only a small proportion of channel reaches where information is required. Therefore, considerable research effort has been devoted to the development of reliable indirect techniques of flood discharge estimation. Research on the interrelationship of stream channel geometry and river discharge has provided the basis for an indirect method of flood estimation – the channel-geometry method – which employs river channel dimensions alone to estimate discharge characteristics at ungauged river sites. Channel-geometry equations are developed empirically by relating streamflow data from gauging stations and channel dimensions measured from natural river reaches in the vicinity of the gauge, and take the form of power function relations. Once regional channel-geometry equations have been defined, a channel width or channel capacity measurement is the only variable needed to estimate the flood flow characteristics at a specified river site. The method is useful as an alternative to traditional catchment-based approaches or as a rapid reconnaissance technique. In addition to the application for flood discharge prediction, channel-geometry equations could prove helpful in the management of river channels, first, by providing a basis for assessing local deviations in the channel form–discharge relation, deviations which could be employed as indicators of the sensitivity of particular stretches of river channel to change, and secondly, in the computation of natural channel dimensions for use in river channel design and river restoration.  相似文献   

8.
Isotope tracers are widely used to study hydrological processes in small catchments, but their use in continental-scale hydrological modeling has been limited. This paper describes the development of an isotope-enabled global water balance and transport model (iWBM/WTM) capable of simulating key hydrological processes and associated isotopic responses at the large scale. Simulations and comparisons of isotopic signals in precipitation and river discharge from available datasets, particularly the IAEA GNIP global precipitation climatology and the USGS river isotope dataset spanning the contiguous United States, as well as selected predictions of isotopic response in yet unmonitored areas illustrate the potential for isotopes to be applied as a diagnostic tool in water cycle model development. Various realistic and synthetic forcings of the global hydrologic and isotopic signals are discussed. The test runs demonstrate that the primary control on isotope composition of river discharge is the isotope composition of precipitation, with land surface characteristics and precipitation-amount having less impact. Despite limited availability of river isotope data at present, the application of realistic climatic and isotopic inputs in the model also provides a better understanding of the global distribution of isotopic variations in evapotranspiration and runoff, and reveals a plausible approach for constraining the partitioning of surface and subsurface runoff and the size and variability of the effective groundwater pool at the macro-scale.  相似文献   

9.
The measurement of river discharge is necessary for understanding many water‐related issues. Traditionally, river discharge is estimated by measuring water stage and converting the measurement to discharge by using a stage–discharge rating curve. Our proposed method for the first time couples the measurement of water‐surface width with river width–stage and stage–discharge rating curves by using very high‐resolution satellite data. We used it to estimate the discharge in the Yangtze (Changjiang) River as a case study. The discharges estimated at four stations from five QuickBird‐2 images matched the ground observation data very well, demonstrating that the proposed approach can be regarded as ancillary to traditional field measurement methods or other remote methods to estimate river discharge. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
1 INTRODUCTION Amongthediversityofexistingriverchannelprocesses,meanderingisthemostcommonandfrequentone.Itistypicallythecommon?..  相似文献   

11.
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Temporal mass variations in the continental hydrosphere and in the atmosphere lead to changes in the gravitational potential field that are associated with load-induced deformation of the Earth’s crust. Therefore, models that compute continental water storage and atmospheric pressure can be validated by measured load deformation time series. In this study, water mass variations as computed by the WaterGAP Global Hydrology Model (WGHM) and surface pressure as provided by the reanalysis product of the National Centers for Environmental Prediction describe the hydrological and atmospheric pressure loading, respectively. GPS observations from 14 years at 208 stations world-wide were reprocessed to estimate admittance factors for the associated load deformation time series in order to determine how well the model-based deformation fits to real data. We found that such site-specific scaling factors can be identified separately for water mass and air pressure loading. Regarding water storage variation as computed by WGHM, weighted global mean admittances are 0.74 ± 0.09, 0.66 ± 0.10, 0.90 ± 0.06 for the north, east and vertical component, respectively. For the dominant vertical component, there is a rather good fit to the observed displacements, and, averaged over all sites, WGHM is found to slightly overestimate temporal variations of water storage. For Europe and North America, with a dense GPS network, site-specific admittances show a good spatial coherence. Regarding regional over- or underestimation of WGHM water storage variations, they agree well with GRACE gravity field data. Globally averaged admittance estimates of pre-computed atmospheric loading displacements provided by the Goddard Geodetic VLBI Group were determined to be 0.88 ± 0.04, 0.97 ± 0.08, 1.13 ± 0.01 for the north, east and vertical, respectively. Here, a relatively large discrepancy for the dominant vertical component indicates an underestimation of corresponding loading predictions.  相似文献   

14.
鄱阳湖湖泊流域系统水文水动力联合模拟   总被引:5,自引:5,他引:0  
李云良  张奇  姚静  李相虎 《湖泊科学》2013,25(2):227-235
本文以鄱阳湖湖泊流域系统为研究对象,鉴于该湖泊流域系统尺度较大,下垫面自然属性呈现高度空间异质性且具有流域-平原区-湖泊不同机制的水文水动力过程,为了真实描述湖泊流域间的水文水动力联系及反映不同过程间的作用机制,构建了鄱阳湖湖泊流域联合模拟模型.该模型基于自主研发的流域分布式水文模型WATLAC和湖滨平原区产流模型以及水动力模型MIKE 21 3个不同功能子模型的连接来实现该复杂系统的模拟.模型的联合采用输入-输出驱动及子模型的顺序执行进程,即将五大子流域与平原区入湖径流量作为输入条件来驱动湖泊水动力模型,模拟湖泊水位对流域入湖径流量的响应.以2000-2005年鄱阳湖流域6个水文站点的河道径流量、流域基流指数以及湖泊4个站点的水位资料来率定模型,其中各站点日径流量拟合的纳希效率系数Ens为0.71~0.84,确定性系数R2介于0.70~0.88之间,而湖泊各站点水位拟合的纳希效率系数Ens变化为0.88~0.98,确定性系数R2为0.96~0.98,均取得令人满意的率定结果.本文提出的鄱阳湖湖泊流域系统水文水动力联合模拟模型能较为理想再现湖泊水位对流域降雨-径流过程的响应.水位模拟结果进一步表明,该联合模型能用来获取重要的水动力空间变化特征.该模型可作为有效工具定量揭示湖泊流域系统水文水动力过程对气候变化和流域人类活动的响应.  相似文献   

15.
Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.  相似文献   

16.
A model of long-term river runoff variations is proposed. The model is based on a difference stochastic equation of water balance on a watershed. Precipitation and evaporation on the watershed are simulated by stochastic, dependent, non-Gaussian Markov processes. Long-term river runoff variations are described by a component of three-dimensional non-Gaussian Markov process. It is shown that the autocorrelation and skewness coefficients for river runoff can be negative. The proposed model can be used to assess the effect of climate-induced variations in precipitation and evaporation regimes in a watershed on long-term river runoff variations.  相似文献   

17.
Abstract

Abstract By use of a coupled ocean–atmosphere–land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the ?IS92a? scenario. In addition, it presents the simulated change in water availability that might be realized in a few centuries in response to a quadrupling of CO2 concentration in the atmosphere. Averaging the results over extended periods, the radiatively forced changes, which are very similar between the two sets of experiments, were successfully extracted. The analysis indicates that the discharges from Arctic rivers such as the Mackenzie and Ob’ increase by up to 20% (of the pre-Industrial Period level) by the middle of the 21st century and by up to 40% or more in a few centuries. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra rivers increase substantially. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller, with both positive and negative signs. For soil moisture, the results of this study indicate reductions during much of the year in many semiarid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. As a percentage, the reduction is particularly large during the dry season. From middle to high latitudes of the Northern Hemisphere, soil moisture decreases in summer but increases in winter.  相似文献   

18.
The south western lake district is a part of the boezem, a system of interconnected lakes and canals in the province of Friesland. The lake district has open boundaries with the other part of the boezem system. However, discharges in the boundary canals are unknown. These discharges are needed for modelling the phosphorus dynamics in the study area. Incidental water flow measurements gave a good indication of the complex water transport in the study area, but continuous water flow recording was not possible. Consequently, discharges could not be measured directly. In order to quantify the discharges, the water transport in the area was modelled by the application of a detailed wind-driven hydrodynamic model. In the model hourly mean values of wind data and water levels at the boundary locations were used as forcing functions. Model tuning was done by comparing observed and computed water levels of three stations within the system. This approach is new in surface water systems in The Netherlands. Therefore, a sensitivity analysis was done and it was verified whether the model results were reliable.The sensitivity analysis showed that the sensitivity was low for modifications of the wind exponent value and rather high for the bottom roughness coefficient. Simulations with daily or weekly mean wind and water level data resulted in an undesirable loss of detail. The sensitivity for noise at the imposed water levels at the boundary locations was moderate. The calculated discharges were used as forcing functions for a chloride mass balance model. Calculated chloride concentrations coincided with measured concentrations in three lakes, during three periods. From this it was concluded that the discharges were reliable. The simulations also lead to the quantification of the water balance and water residence times in the lakes.  相似文献   

19.
Assessments of water resources by using macro‐scale models tend to be conducted at the continental or large catchment scale. However, security of freshwater supplies is a local issue and thus necessitates study at such a scale. This research aims to evaluate the suitability of the Land Processes and eXchanges dynamic global vegetation model (LPX‐DGVM) for simulating runoff for small catchments in the UK. Simulated annual and monthly runoff is compared against the National River Flow Archive streamflow observations from 12 catchments of varying size (500–10 000 km2) and climate regimes. Results show that LPX reproduces observed inter‐annual and intra‐annual runoff variability successfully in terms of both flow timings and magnitudes. Inter‐annual variability in flow timings is simulated particularly well (as indicated by Willmott's index of agreement values of ≥0.7 for the majority of catchments), whereas runoff magnitudes are generally slightly overestimated. In the densely populated Thames catchment, these overestimations are partly accounted for by water consumption. Seasonal variability in runoff is also modelled well, as shown by Willmott's index of agreement values of ≥0.9 for all but one catchment. Absence of river routing and storage from the model, in addition to precipitation uncertainties, is also suggested as contributing to simulated runoff discrepancies. Overall, the results show that the LPX‐DGVM can successfully simulate runoff processes for small catchments in the UK. This study offers promising insights into the use of global‐scale models and datasets for local‐scale studies of water resources, with the eventual aim of providing local‐scale projections of future water distributions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A physically based distributed hydrological model developed at the University of Yamanashi based on block‐wise use of TOPMODEL and the Muskingum–Cunge method (YHyM/BTOPMC), integrated with a simple degree‐day–based snow accumulation/melt sub‐model, was applied to evaluate hydrological responses under changing climatic conditions in the snow‐fed Kali Gandaki River Basin (KGRB) in Western Nepal. Rainy season precipitation (June to September) in the basin takes up about 80% of the annual precipitation, and dry season runoff is largely contributed by snowmelt. Climate change is likely to increase the probability of extreme events and problems related to water availability. Therefore, the study aimed to simulate runoff pattern under changing climatic conditions, which will be helpful in the management of water resources in the basin. Public domain global data were widely used in this study. The model was calibrated and validated with an acceptable degree of accuracy. The results predicted that the annual average discharge will increase by 2.4%, 3.7%, and 5.7% when temperature increases by 1, 2, and 3 °C compared with the reference scenario. Similarly, maximum, minimum, and seasonal discharges in the monsoon and pre‐monsoon seasons will also increase with rising temperature. Snowmelt runoff is found sensitive to temperature changes in the KGRB. Increasing temperature will cause a faster snowmelt, but precipitation will increase the snowpack and also shed a positive effect on the total annual and monsoonal discharge. For the combined scenarios of increasing temperature and precipitation, the annual average discharge will increase. In contrast, discharge during the increasing temperature and decreasing precipitation will tend to decrease. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号