首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number of equivalence classes of central configurations of $n \le 4$ bodies of positive mass is known to be finite, but it remains to be shown if this is true for $n \ge 5$ . By allowing one mass to be negative, Gareth Roberts constructed a continuum of inequivalent planar central configurations of $n = 5$ bodies. We reinterpret Roberts’ example and generalize the construction of his continuum to produce a family of continua of central configurations, each with a single negative mass. These new continua exist in even dimensional spaces $\mathbb R ^k$ for $k \ge 4$ .  相似文献   

2.
We present estimates of the size of the analytic domain of stability for co-orbital motions obtained by a high order normal form in the framework of the elliptic restricted three body problem. As a demonstration example, we consider the motion of a Trojan body in an extrasolar planetary system with a giant planet of mass parameter $\mu =0.005$ μ = 0.005 and eccentricity $e^{\prime }=0.1$ e ′ = 0.1 . The analysis contains three basic steps: (i) derivation of an accurate expansion of the Hamiltonian, (ii) computation of the normal form up to an optimal order (in the Nekhoroshev sense), and (iii) computation of the optimal size of the remainder at various values of the action integrals (proper elements) of motion. We explain our choice of variables as well as the method used to expand the Hamiltonian so as to ensure a precise model. We then compute the normal form up to the normalisation order $r=50$ r = 50 by use of a computer-algebraic program. We finally estimate the size $||R||$ | | R | | of the remainder as a function of the normalization order, and compute the optimal normalization order at which the remainder becomes minimum. It is found that the optimal value $\log (||R_{opt}||)$ log ( | | R o p t | | ) can serve in order to construct a stability map for the domain of co-orbital motion using only series. This is compared to the stability map found by a purely numerical approach based on chaotic indicators.  相似文献   

3.
We study the secular dynamics of lunar orbiters, in the framework of high-degree gravity models. To achieve a global view of the dynamics, we apply a frequency analysis (FA) technique which is based on Prony’s method. This allows for an extensive exploration of the eccentricity ( $e$ )—inclination ( $i$ ) space, based on short-term integrations ( $\sim $ 8 months) over relatively high-resolution grids of initial conditions. Different gravity models are considered: 3rd, 7th and 10th degree in the spherical harmonics expansion, with the main perturbations from the Earth being added. Since the dynamics is mostly regular, each orbit is characterised by a few parameters, whose values are given by the spectral decomposition of the orbital elements time series. The resulting frequency and amplitude maps in ( $e_0,i_0$ ) are used to identify the dominant perturbations and deduce the “minimum complexity” model necessary to capture the essential features of the long-term dynamics. We find that the 7th degree zonal harmonic ( $J_7$ term) is of profound importance at low altitudes as, depending on the initial secular phases, it can lead to collision with the Moon’s surface within a few months. The 3rd-degree non-axisymmetric terms are enough to describe the deviations from the 1 degree-of-freedom zonal problem; their main effect is to modify the equilibrium value of the argument of periselenium, $\omega $ , with respect to the “frozen” solution ( $\omega =\pm 90^{\circ }, \forall \Omega $ , where $\Omega $ is the nodal longitude). Finally, we show that using FA on a fine grid of initial conditions, set around a suitably chosen ‘first guess’, one can compute an accurate approximation of the initial conditions of a periodic orbit.  相似文献   

4.
We investigate the dynamics of two satellites with masses $\mu _s$ and $\mu '_s$ orbiting a massive central planet in a common plane, near a first order mean motion resonance $m+1{:}m$ (m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles $\phi = (m+1)\lambda ' -m\lambda - \varpi $ and $\phi '= (m+1)\lambda ' -m\lambda - \varpi '$ , where $\lambda $ and $\varpi $ are the mean longitude and longitude of periapsis of $\mu _s$ , respectively, and where the primed quantities apply to $\mu '_s$ . We consider the special case where $\mu _s \rightarrow 0$ (restricted problem). The symmetry between the two angles $\phi $ and $\phi '$ is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance $D$ between the CER and LER, and a forcing parameter $\epsilon _L$ that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for $D=0$ the system is integrable, for $D$ of order unity, it exhibits prominent chaotic regions, while for $D$ large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.  相似文献   

5.
The equation of motion of long periodic libration around the Lagrangian point $L_4$ L 4 in the restricted three-body problem is investigated. The range of validity of an approximate analytical solution in the tadpole region is determined by numerical integration. The predictions of the model of libration are tested on the Trojan asteroids of Jupiter. The long time evolution of the orbital eccentricity and the longitude of the perihelion of the Trojan asteroids, under the effect of the four giant planets, is also investigated and a slight dynamical asymmetry is shown between the two groups of Trojans at $L_4$ L 4 and $L_5$ L 5 .  相似文献   

6.
The classic $F$ and $G$ Taylor series of Keplerian motion are extended to solve the Stark problem and to use the generalized Sundman transformation. Exact recursion formulas for the series coefficients are derived, and the method is implemented to high order via a symbolic manipulator. The results lead to fast and accurate propagation models with efficient discretizations. The new $F$ and $G$ Stark series solutions are compared to the Modern Taylor Series (MTS) and 8th order Runge–Kutta–Fehlberg (RKF8) solutions. In terms of runtime, the $F$ and $G$ approach is shown to compare favorably to the MTS method up to order 20, and both Taylor series methods enjoy approximate order of magnitude speedups compared to RKF8 implementations. Actual runtime is shown to vary with eccentricity, perturbation size, prescribed accuracy, and the Sundman power law. The method and results are valid for both the Stark and the Kepler problems. The effects of the generalized Sundman transformation on the accuracy of the propagation are analyzed. The Taylor series solutions are shown to be exceptionally efficient when the unity power law from the classic Sundman transformation is applied. An example low-thrust trajectory propagation demonstrates the utility of the $F$ and $G$ Stark series solutions.  相似文献   

7.
This paper presents a new theory of the dynamical tides of celestial bodies. It is founded on a Newtonian creep instead of the classical delaying approach of the standard viscoelastic theories and the results of the theory derive mainly from the solution of a non-homogeneous ordinary differential equation. Lags appear in the solution but as quantities determined from the solution of the equation and are not arbitrary external quantities plugged in an elastic model. The resulting lags of the tide components are increasing functions of their frequencies (as in Darwin’s theory), but not small quantities. The amplitudes of the tide components depend on the viscosity of the body and on their frequencies; they are not constants. The resulting stationary rotations (often called pseudo-synchronous) have an excess velocity roughly proportional to $6ne^2/(\chi ^2+\chi ^{-2})$ ( $\chi $ is the mean-motion in units of one critical frequency—the relaxation factor—inversely proportional to the viscosity) instead of the exact $6ne^2$ of standard theories. The dissipation in the pseudo-synchronous solution is inversely proportional to $(\chi +\chi ^{-1})$ ; thus, in the inviscid limit, it is roughly proportional to the frequency (as in standard theories), but that behavior is inverted when the viscosity is high and the tide frequency larger than the critical frequency. For free rotating bodies, the dissipation is given by the same law, but now $\chi $ is the frequency of the semi-diurnal tide in units of the critical frequency. This approach fails, however, to reproduce the actual tidal lags on Earth. In this case, to reconcile theory and observations, we need to assume the existence of an elastic tide superposed to the creeping tide. The theory is applied to several Solar System and extrasolar bodies and currently available data are used to estimate the relaxation factor $\gamma $ (i.e. the critical frequency) of these bodies.  相似文献   

8.
A simple procedure is developed to determine orbital elements of an object orbiting in a central force field which contribute more than three independent celestial positions. By manipulation of formal three point Gauss method of orbit determination, an initial set of heliocentric state vectors r i and $\dot{\mathbf{r}}_{i}$ is calculated. Then using the fact that the object follows the path that keep the constants of motion unchanged, I derive conserved quantities by applying simple linear regression method on state vectors r i and $\dot{\mathbf{r}}_{i}$ . The best orbital plane is fixed by applying an iterative procedure which minimize the variation in magnitude of angular momentum of the orbit. Same procedure is used to fix shape and orientation of the orbit in the plane by minimizing variation in total energy and Laplace Runge Lenz vector. The method is tested using simulated data for a hypothetical planet rotating around the sun.  相似文献   

9.
We present the results of photometric observations of a bright cataclysmic variable TT Ari with an orbital period of 0.13755 days. CCD observations were carried out with the Russian-Turkish RTT 150 telescope in 2001 and 2004 (13 nights). Multi-color photoelectric observations of the system were obtained with the Zeiss 600 telescope of SAO RAS in 1994–1995 (6 nights). In 1994–1995, the photometric period of the system was smaller than the orbital one (0 . d 132 and 0 . d 134), whereas it exceeded the latter (0 . d 150 and 0 . d 148) in 2001, 2004. An additional period exceeding the orbital one (0 . d 144) is detected in 1995 modulations. We interpret it as indicating the elliptic disc precession in the direction of the orbital motion. In 1994, the variability in colors shows periods close to the orbital one (0 . d 136, b-v), as well as to the period indicating the elliptic disk precession (0 . d 146, w-b). We confirm that during the epochs characterized by photometric periods shorter than the orbital one, the quasi-periodic variability of TT Ari at time scales about 20 min is stronger than during epochs with long photometric periods. In general, the variability of the system can be described as a “red” noise with increased amplitudes of modulations at characteristic time scales of 10–40 min.  相似文献   

10.
The stability limit of coplanar hierarchical triple systems is numerically studied. Systems we investigated consist of two equal mass bodies initially on a circular orbit and third body with various masses, which at the maximum are equal to the mass of the binary. In order to estimate the stability limit, we use an empirically-found fact that the system is quasi-periodic if the initial eccentricity of the outer binary is less than some critical value, otherwise the third body eventually escapes. We make an analytical expression for the stability limit in terms of the ratio of the orbital radii and find that the expression improves the previous criteria. The resultant expression also suggests that the ratio of the orbital radii rapidly approaches to a certain value (e.g. $\sim $ 2, in an initially circular outer binary) as the mass of the third-body tends to zero.  相似文献   

11.
The planar problem of three bodies is described by means of Murnaghan's symmetric variables (the sidesa j of the triangle and an ignorable angle), which directly allow for the elimination of the nodes. Then Lemaitre's regularized variables \(\alpha _j = \sqrt {(\alpha ^2 - \alpha _j )}\) , where \(\alpha ^2 = \tfrac{1}{2}(a_1 + a_2 + a_3 )\) , as well as their canonically conjugated momenta are introduced. By finally applying McGehee's scaling transformation \(\alpha _j = r^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} \tilde \alpha _j\) , wherer 2 is the moment of inertia a system of 7 differential equations (with 2 first integrals) for the 5-dimensional triple collision manifold \(T\) is obtained. Moreover, the zero angular momentum solutions form a 4-dimensional invariant submanifold \(N \subset T\) represented by 6 differential equations with polynomial right-hand sides. The manifold \(N\) is of the topological typeS 2×S 2 with 12 points removed, and it contains all 5 restpoint (each one in 8 copies). The flow on \(T\) is gradient-like with a Lyapounov function stationary in the 40 restpoints. These variables are well suited for numerical studies of planar triple collision.  相似文献   

12.
The object of study is the geodesic structure of a \(z=2\) Lifshitz black hole in 3+1 space–time dimensions, which is an exact solution to the Einstein-scalar-Maxwell theory. The motion of massless and massive particles in this background is researched using the standard Lagrangian procedure. Analytical expressions are obtained for radial and angular motions of the test particles, where the polar trajectories are given in terms of the \(\wp \) -Weierstraß elliptic function. It will be demonstrated that an external observer can see that photons with radial motion arrive at spatial infinity in a finite coordinate time. For particles with non-vanished angular momentum, the motion is studied on the invariant plane \(\phi = \pi /2\) and, it is shown that bounded orbits are not allowed for this space–time on this plane. These results are consistent with other recent studies on Lifshitz black holes.  相似文献   

13.
A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131–150, 2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez’s method for near-circular motion under the $J_{2}$ perturbation is transformed into linear. Moreover, the method reveals to be competitive with two very popular element methods derived from the Kustaanheimo-Stiefel and Sperling-Burdet regularizations.  相似文献   

14.

This study constitutes the second phase of an effort devoted to the relative motion of two spheroidal rigid bodies.

An isolated binary system was considered whose components are bodies: (1) of comparable size; (2) of constant density; and (3) having the shape of an oblate ellipsoid of revolution with small meridional eccentricity.

The equations that determine the relative motion of the centroids and the angular motion for the two sets of body axes constitute a simultaneous system of seven nonlinear, second-order differential equations, for which solutions were obtained as power series in the two meridional eccentricities.

A recurrent procedure was formulated to ascertain the various approximations in terms of lower order terms; it gave rise to linear differential equations with constant coefficients for the angular variables and to differential equations of the Hill type for the other coordinates. The zero-order approximation for the motion of the centroids was assumed to be a Kepler elliptic orbit of small eccentricity.

The following contributions were made:

  1. (1)

    The general solution to the zero-order approximation of the rotational motion was obtained in terms of elementary functions;

  2. (2)

    Certain functionals, related to the Kepler motion and depending on two parameters, were expressed in terms of the mean anomaly up to the sixth power of the orbital eccentricity in order to evaluate the lower order terms of the various approximations;

  3. (3)

    The secular terms were eliminated from the first-order approximation;

  4. (4)

    The second-order approximation was also obtained; and

  5. (5)

    An alternate procedure was suggested that might be more appropriate for achieving higher order approximations.

  相似文献   

15.
The Ideal Resonance Problem in its normal form is defined by the Hamiltonian (1) $$F = A (y) + 2B (y) sin^2 x$$ with (2) $$A = 0(1),B = 0(\varepsilon )$$ where ? is a small parameter, andx andy a pair of canonically conjugate variables. A solution to 0(?1/2) has been obtained by Garfinkel (1966) and Jupp (1969). An extension of the solution to 0(?) is now in progress in two papers ([Garfinkel and Williams] and [Hori and Garfinkel]), using the von Zeipel and the Hori-Lie perturbation methods, respectively. In the latter method, the unperturbed motion is that of a simple pendulum. The character of the motion depends on the value of theresonance parameter α, defined by (3) $$\alpha = - A\prime /|4A\prime \prime B\prime |^{1/2} $$ forx=0. We are concerned here withdeep resonance, (4) $$\alpha< \varepsilon ^{ - 1/4} ,$$ where the classical solution with a critical divisor is not admissible. The solution of the perturbed problem would provide a theoretical framework for an attack on a problem of resonance in celestial mechanics, if the latter is reducible to the Ideal form: The process of reduction involves the following steps: (1) the ration 1/n2 of the natural frequencies of the motion generates a sequence. (5) $$n_1 /n_2 \sim \left\{ {Pi/qi} \right\},i = 1, 2 ...$$ of theconvergents of the correspondingcontinued fraction, (2) for a giveni, the class ofresonant terms is defined, and all non-resonant periodic terms are eliminated from the Hamiltonian by a canonical transformation, (3) thedominant resonant term and itscritical argument are calculated, (4) the number of degrees of freedom is reduced by unity by means of a canonical transformation that converts the critical argument into an angular variable of the new Hamiltonian, (5) the resonance parameter α (i) corresponding to the dominant term is then calculated, (6) a search for deep resonant terms is carried out by testing the condition (4) for the function α(i), (7) if there is only one deep resonant term, and if it strongly dominates the remaining periodic terms of the Hamiltonian, the problem is reducible to the Ideal form.  相似文献   

16.
The effects of solid and ocean tides have been computed on the right ascension of the ascending node of the two LAGEOS and LARES satellites and on the argument of pericenter of LAGEOS II. Their effects—together with the possible mis-modeling related to systematic errors in the estimate of the tidal coefficients, especially in the case of ocean tides—are quite important to be well established for the key role of the LAGEOS satellites, as well as of the newly LARES, in space geodesy and geophysics as well as in fundamental physics measurements. In the case of the measurement of the Lense–Thirring effect, the mis-modeling of long-period tides may mimic a secular effect on the cited orbital elements, thus producing a degradation in the measurement of the relativistic precession. A suitable combination of the orbital elements of the three satellites can help in avoiding the effects of the long-period tides of degree \(\ell =2\) (as for the Lunar solid tides with periods of 18.6 and 9.3 years) and \(\ell =4\), but other long-period tides, as the ocean \(K_1\) tide, which has the same periodicities of the right ascension of the ascending node \(\varOmega \) of the satellites, may strongly influence the measurement, especially if it is performed over a relatively short time span. These results are particularly important in the case of LARES, since they are new and because of the role that the orbit of LARES, and especially of its ascending node right ascension, will have in a new measurement of the Lense–Thirring effect by the joint analysis of its orbit with that of the two LAGEOS.  相似文献   

17.
Attitude stability of spacecraft subjected to the gravity gradient torque in a central gravity field has been one of the most fundamental problems in space engineering since the beginning of the space age. Over the last two decades, the interest in asteroid missions for scientific exploration and near-Earth object hazard mitigation is increasing. In this paper, the problem of attitude stability is generalized to a rigid spacecraft on a stationary orbit around a uniformly-rotating asteroid. This generalized problem is studied via the linearized equations of motion, in which the harmonic coefficients $C_{20}$ and $C_{22}$ of the gravity field of the asteroid are considered. The necessary conditions of stability of this conservative system are investigated in detail with respect to three important parameters of the asteroid, which include the harmonic coefficients $C_{20}$ and $C_{22}$ , as well as the ratio of the mean radius to the radius of the stationary orbit. We find that, due to the significantly non-spherical shape and the rapid rotation of the asteroid, the attitude stability domain is modified significantly in comparison with the classical stability domain predicted by the Beletskii–DeBra–Delp method on a circular orbit in a central gravity field. Especially, when the spacecraft is located on the intermediate-moment principal axis of the asteroid, the stability domain can be totally different from the classical stability domain. Our results are useful for the design of attitude control system in the future asteroid missions.  相似文献   

18.
Multi-colourWBVR photoelectric observations of the eclipsing binary AS Cam have been carried out and the photometric elements, absolute dimensions, and the angular velocity of a periastron motion ( \(\mathop \omega \limits^ \cdot _{obs}\) ) are determined. The obtained value of \(\mathop \omega \limits^ \cdot _{obs}\) is almost three times smaller than that theoretically predicted.  相似文献   

19.
Tuominen  Jaakko 《Solar physics》1974,38(1):15-31
Oscillator strengths are calculated for 259 lines of Ti i by taking configuration interaction into account in a somewhat simplified treatment. Radial integrals are obtained by an adaptation of the scaled Thomas-Fermi method. The great majority of selected lines originate from slightly perturbed terms. From a satisfactory comparison of our g \({\text{f}}\) -values with recent experimental data and with solar results in the visible region, we have been able to extend the work for some infrared lines. Very few transition probabilities were known for Ti i in that spectral range. On the basis of our oscillator strengths, a mean value logN ti = 4.88 ± 0.12 (in the usual scale), is proposed for the solar photospheric abundance, in agreement with the meteoritic value.  相似文献   

20.
The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange–Poisson case, we compute the second (precession, \(\psi \)) and third (spin, \(\varphi \)) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle \(\psi \) completing the treatment of the Euler–Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order \(-\,1/2\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号