首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文提出具幂津谱分布的非热电子在多重偶极子磁场中产生回旋同步辐射是晚型恒星宁静微波辐射的一个可能机制。文中假设有10—20个磁偶极子随机地分布在恒星光球之下,非热电子与背景热电子数密度之比<10~(-3),并且在非热电子分布中引入了与其寿命有联系的因子。由此计算并分析了回旋同步辐射谱和偏振性质,并获得了辐射源的空间分布特性。  相似文献   

2.
Simultaneous MERLIN observations of the OH 1665- and 1667-MHz maser lines in the circumstellar envelope of the semiregular star W Hya have been taken in all Stokes parameters. The 1665-MHz emission comes from two elongated clusters located 80 au from the star. The 1667-MHz emission arises in an incomplete shell of radius 130 au, with the blueshifted features located in the northern part of the envelope and the redshifted components clustered south of the centre. The circularly polarized maser components exhibit spatial separation along the north–south direction. The linearly polarized components were found from the near side of the envelope. Their polarization position angles indicate that the projected axis of the magnetic field at PA ≃ −20° is consistent with spatial segregation of circular polarization. The intensity of the magnetic field, estimated from a tentative measurement of Zeeman splitting, is about 0.6 mG at the location of the 1667-MHz emission, with the field pointing away from the observer. A small change of position angles of linear polarization observed in both maser lines is interpreted as a weak Faraday effect in the maser regions with an electron density of about 2 cm−3. The overall polarization structure of the envelope suggests an ellipsoidal or weak bipolar geometry. In such a configuration, the circumstellar magnetic field may exert a non-negligible influence on mass loss. The velocity field in the circumstellar envelope recovered from observations of SiO, H2O, OH and CO lines at five radial distances reveals a logarithmic velocity gradient of 0.25 and 0.21 in the 1665- and 1667-MHz maser regions respectively. The acceleration within tens of stellar radii cannot be explained by the classical model of radiation pressure on dust.  相似文献   

3.
This work demonstrates the possibility of magnetic-field topology investigations using microwave polarimetric observations. We study a solar flare of GOES M1.7 class that occurred on 11 February, 2014. This flare revealed a clear signature of spatial inversion of the radio-emission polarization sign. We show that the observed polarization pattern can be explained by nonthermal gyrosynchrotron emission from the twisted magnetic structure. Using observations of the Reuven Ramaty High Energy Solar Spectroscopic Imager, Nobeyama Radio Observatory, Radio Solar Telescope Network, and Solar Dynamics Observatory, we have determined the parameters of nonthermal electrons and thermal plasma and identified the magnetic structure where the flare energy release occurred. To reconstruct the coronal magnetic field, we use nonlinear force-free field (NLFFF) and potential magnetic-field approaches. Radio emission of nonthermal electrons is simulated by the GX Simulator code using the extrapolated magnetic field and the parameters of nonthermal electrons and thermal plasma inferred from the observations; the model radio maps and spectra are compared with observations. We have found that the potential-magnetic-field approach fails to explain the observed circular polarization pattern; on the other hand, the Stokes-\(V\) map is successfully explained by assuming nonthermal electrons to be distributed along the twisted magnetic structure determined by the NLFFF extrapolation approach. Thus, we show that the radio-polarization maps can be used for diagnosing the topology of the flare magnetic structures where nonthermal electrons are injected.  相似文献   

4.
We analyze high-resolution, one-dimensional observations of simple microwave bursts, obtained at 4.9 GHz with the Westerbork Synthesis Radio Telescope in 1980, together with H photographs of the associated flares from the Observatories of Athens and Meudon. In most cases the polarization structure can be interpreted in terms of extraordinary mode emission, taking into account the polarity of the underlying magnetic field and propagation effects, which may lead to inversion of the sense of polarization in the limbward part of the flaring loop. We found evidence for ordinary mode emission in two classes of events. In one class theo-mode comes from regions overlying strong magnetic field, which we interpret in terms of thermal gyroresonance absorption of the extraordinary mode at the third harmonic of the gyrofrequency. In the other class the entire burst emits in theo-mode, which may be attributed to high gyrosynchrotron optical depth.  相似文献   

5.
We present calculations, made for the first time, of the gyrosynchrotron emission by mildly relativistic electrons with anisotropic pitch-angle distribution using a realistic magnetic loop model in three dimensions. We investigated the intensity, spectral index of the optically thin region of the spectrum, the spatial morphology and the dependency on the source position on the solar disk. The method to describe a three-dimensional source and the procedure to perform the calculations are presented. We have modified the Ramaty’s gyrosynchrotron code to allow the evaluation of anisotropic pitch-angle electron distributions, as described in the complete formalism. We found that anisotropic electron distributions affect the intensity of the radiation, spatial morphology and spectrum of spatially resolved sources. However, the spatially integrated spectrum of the emission seems to be insensitive to the electron pitch-angle distribution, as the magnetic field inhomogeneity smooths out the effects of the anisotropic distribution in the produced radiation, in contrast to homogeneous sources.  相似文献   

6.
We present X-ray emission characteristics of the massive O-type stars DH Cep and HD 97434 using archival XMM-Newton observations. There is no convincing evidence for short-term variability in the X-ray intensity during the observations. However, the analysis of their spectra reveals X-ray structure being consistent with two-temperature plasma model. The hydrogen column densities derived from X-ray spectra of DH Cep and HD 97434 are in agreement with the reddening measurements for their corresponding host clusters NGC 7380 and Trumpler 18, indicating that the absorption by stellar wind is negligible. The X-ray emission from these hot stars is interpreted in terms of the standard instability-driven wind-shock model.  相似文献   

7.
Within the framework of ideal magnetohydrodynamics the excitation of the ballooning instability in a toroidal coronal loop with a radius of cross section a and a radius of curvature R is analyzed by using the energy method. Kink oscillations are able to excite the ballooning instability when the plasma beta parameter β>2a/R. It has been suggested that this can result in the formation of cusp-shaped coronal loops. Modulation of gyrosynchrotron emission caused by kink oscillations is considered. The intensity of gyrosynchrotron emission for optically thin sources is the most sensitive to Alfvén disturbances. The obtained theoretical results are discussed in the light of Yohkoh, SOHO, TRACE, RHESSI, and Nobeyama observations.  相似文献   

8.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

9.
The new generation of multiwavelength radioheliographs with high spatial resolution will employ microwave imaging spectropolarimetry to recover flare topology and plasma parameters in the flare sources and along the wave propagation paths. The recorded polarization depends on the emission mechanism and emission regime (optically thick or thin), the emitting particle properties, and propagation effects. Here, we report an unusual flare, SOL2012-07-06T01:37, whose optically thin gyrosynchrotron emission of the main source displays an apparently ordinary mode sense of polarization in contrast to the classical theory that favors the extraordinary mode. This flare produced copious nonthermal emission in hard X-rays and in high-frequency microwaves up to 80 GHz. It is found that the main flare source corresponds to an interaction site of two loops with greatly different sizes. The flare occurred in the central part of the solar disk, which allows reconstructing the magnetic field in the flare region using vector magnetogram data. We have investigated the three possible known reasons of the circular polarization sense reversal – mode coupling, positron contribution, and the effect of beamed angular distribution. We excluded polarization reversal due to contribution of positrons because there was no relevant response in the X-ray emission. We find that a beam-like electron distribution can produce the observed polarization behavior, but the source thermal density must be much higher than the estimate from to the X-ray data. We conclude that the apparent ordinary wave emission in the optically thin mode is due to radio wave propagation across the quasi-transverse (QT) layer. The abnormally high transition frequency (above 35 GHz) can be achieved reasonably low in the corona where the magnetic field value is high and transverse to the line of sight. This places the microwave source below this QT layer, i.e. very low in the corona.  相似文献   

10.
Wang  M.  Fu  Q.J.  Xie  R.X.  Duang  C.C. 《Solar physics》2001,203(1):145-148
A microwave patch event observed with the 2.6–3.8 GHz spectrometer of Beijing Astronomical Observatory (BAO) on 12 June 1998 is described in detail in this paper. The patches show high flux densities, high polarization degree, extremely narrow bandwidth, and high spectral indexes. These observational characteristics may suggest that the favored emission mechanism is plasma or maser emission rather than gyrosynchrotron emission.  相似文献   

11.
The main aim of this paper is to estimate, from multispectral observations, the plasma parameters in a microwave burst source which was also the site of spike emission. This information is essential for the determination of the spike emission process. By analyzing one-dimensional source distributions observed with the SSRT at 5.7 GHz and correlating them with Yohkoh X-ray and Nobeyama 17 GHz images, we have concluded that the microwave emitting region was larger than the soft X-ray loop-top source, and that the origin of the burst could be explained by gyrosynchrotron emission of non-thermal electrons in a magnetic field of approximately 100 G. It has been shown that the source of 5.7 GHz spikes observed during the burst was located close to an SXR-emitting loop with high density and temperature and a relatively low magnetic field. Thus, plasma emission is the most favourable radiation mechanism for the generation of the sub-arc-second microwave pulses.  相似文献   

12.
A potentially promising way to gain knowledge about the internal dynamics of extrasolar planets is by remote measurement of an intrinsic magnetic field. Strong planetary magnetic fields, maintained by internal dynamo action in an electrically conducting fluid layer, are helpful for shielding the upper atmosphere from stellar wind induced mass loss and retaining water over long (Gyr) time scales. Here we present a whole planet dynamo model that consists of three main components: an internal structure model with composition and layers similar to the Earth, an optimal mantle convection model that is designed to maximize the heat flow available to drive convective dynamo action in the core, and a scaling law to estimate the magnetic field intensity at the surface of a terrestrial exoplanet. We find that the magnetic field intensity at the core surface can be up to twice the present-day geomagnetic field intensity, while the magnetic moment varies by a factor of 20 over the models considered. Assuming electron cyclotron emission is produced from the interaction between the stellar wind and the exoplanet magnetic field we estimate the cyclotron frequencies around the ionospheric cutoff at 10 MHz with emission fluxes in the range 10−4-10−7 Jy, below the current detection threshold of radio telescopes. However, we propose that anomalous boosts and modulations to the magnetic field intensity and cyclotron emission may allow for their detection in the future.  相似文献   

13.
We have compared microwave imaging data for a small flare with simultaneous hard X-ray spectral observations. The X-ray data suggest that the power-law index of the energy distribution of the radiating electrons is 5.3 (thick-target) which differs significantly from the estimate ( = 1.4) from a homogeneous optically-thin gyrosynchrotron model which fits the radio observations well. In order to reconcile these results, we explore a number of options. We investigate a double power-law energy spectrum for the energetic electrons in the flare, as assumed by other authors: the power law is steep at low energies and much flatter at the higher energies which produce the bulk of the microwaves. The deduced break energy is about 230 keV if we tentatively ignore the X-ray emission from the radio-emitting electrons: however, the emission of soft photons by the flat tail strongly contributes to the observed hard X-ray range and would flatten the spectrum there. A thin-target model for the X-ray emission is also inconsistent with radio data. An inhomogeneous gyrosynchrotron model with a number of free parameters and containing an electron distribution given by the thick-target X-ray model could be made to fit the radio data.  相似文献   

14.
Photometric observations over three seasons show HD 288313 to be a light variable with a 2.2636-d period. The observed V amplitudes lie in the range of 0.06–0.15 mag. The star showed appreciable changes in the brightness at maximum and minimum of the light curve from season to season. The (   b − y   ) colour did not show any significant variation during the photometric cycle. The light variation appears to be caused by the rotational modulation of stellar flux by cool starspots distributed asymmetrically across the stellar longitudes. The Hα line strength in HD 288313 varied drastically from completely filled-in emission to almost full absorption, that is typical of a normal star of similar spectral type. The Hα equivalent width is found to show a clear rotational modulation only occasionally. Most of the time, chromospheric active regions are distributed well across the stellar longitudes, thereby suppressing obvious rotational modulations. Broad-band linear polarization measurements show HD 288313 to be a short period, low-amplitude polarization variable. The polarization variation is, apparently, rotationally modulated. Dust grain scattering in a non-spherical circumstellar envelope of a star with inhomogeneities in the surface brightness distribution seems to be the mechanism operating in producing the observed polarization.  相似文献   

15.
Very Large Array surface brightness and spectral index maps of the evolving extended emission of the triple symbiotic star CH Cygni are presented. These are derived from observations at 4.8, 8.4 and 14 GHz between 1985 and 1999. The maps are dominated by thermal emission around the central bright peak of the nebula, but we also find unambiguous non-thermal emission associated with the extended regions. Our observations confirm that this is a jet. The central region has been associated with the stellar components through Hubble Space Telescope imaging. If the jets are the result of ejection events at outburst, expansion velocities are consistent with those from other measurement methods. We propose that the non-thermal emission is caused by material ejected in the bipolar jets interacting with the circumstellar wind envelope. The resulting shocks lead to local enhancements in the magnetic field from the compact component of the order of 3 mG.  相似文献   

16.
Observations and analysis of magnetic activity phenomena in the atmospheres of cool stars—e.g., active regions, flares, stellar cycles—give insight into the fundamental processes in the heating of chromospheres, transition regions (TRs), and coronae. Diagnostics of magnetic activity can be found throughout the whole electromagnetic spectrum; from radio wavelengths, where gyrosynchrotron radiation arises from the quiescent and flaring corona, to optical, where important signatures are the Balmer lines and the Ca ii IRT and H&K lines, eventually to UV and X-rays, the latter mainly due to coronal thermal plasma. The UV and EUV ranges contains a plethora of emission lines that are powerful diagnostics for the warm (10?000 K) chromospheres, hot (100?000–800?000 K) TRs and very hot (1–10 MK) coronae. Also very weak coronal winds from cool stars have been identified and characterized thanks to high resolution UV spectra. Here I review the main results from UV observations of cool stars atmospheres and outline what can be expected from future UV imaging and spectroscopy measurements.  相似文献   

17.
Model calculations of the S-component accounting for the emission from uniform sunspot and inhomogeneous plage regions are applied to a prediction of the spectral distribution of the degree of circular polarization at millimetre waves. The results are compared with observations adopted from the literature and a sufficient agreement between model computation and measurement can be slated. However, observations with higher spatial resolution than presently available are needed in order to check the predicted fine structures and to verify details of the applied model.  相似文献   

18.
We present spectropolarimetric observations, obtained at H α , of the Herbig Ae star AB Aurigae. Changes in linear polarization across the H α line probe structure in the immediate circumstellar environment of the central star, down to scales of the order of one to a few stellar radii. In the case of AB Aurigae the observed polarimetric signature is complex. After applying a correction for foreground continuum polarization, we find that there is a linear-polarized H α emission component intrinsic to the source. Rotation of the angle of polarization through the emission-line profile suggests scattering in a rotating circumstellar disc. The magnetic accretor model commonly applied to T Tauri stars shows promise of explaining these data.  相似文献   

19.
The problem of polarization of the resonance lines formed in extended spherical atmospheres is studied in detail. In this paper, the atmosphere is assumed to be at rest. The basic problem of resonance line polarization in spherical atmospheres as compared to the conventionally used plane-parallel atmospheres, is studied in Nagendra (1988). Our main interest in this paper is to understand the behaviour of polarized radiation fields in extended model spherical atmospheres so that some constraints can be placed on the model parameters in the modelling work conected with observations of polarization across resonance lines. A comparison of polarized lines formed under three kinds of line-scattering mechanisms is also made. They are CS=coherent scatteirng, CRD=complete redistribution, and PRD=partial frequency redistribution which, in the increasing order of generality, provide a good approximation in the two-level atom approach, to the resonance line polarization. The dependence of polarization on the opacity laws, extendedness and on optical depth is studied in detail. The distribution of line intensity and polarization across the visible disk of an extended model stellar atmosphere is studied, in view of the possible disk-resolved observations in future, of the extended atmospheres of the stars.  相似文献   

20.
The birefringent effects of photon–pseudo-scalar boson (Goldstone) particle mixing in intergalactic magnetic field are calculated for cosmological objects. We use the recent results of PVLAS collaboration that reported recently the observation of a rotation of the polarization plane of light propagating through a transverse static magnetic field. Such result was interpreted as arising due to conversion of photon into pseudo-scalar with coupling strength   g ∼ 4 × 10−6 GeV−1  . This result contradicts to data of stellar evolution that excluded standard axion model and seems to claim existence of supersymmetry (SUSY) pseudo-scalars. We estimate the intergalactic magnetic field magnitude as ∼10−16 G based on Hatsemekers et al. observations of extreme-scale alignments of quasar polarization vectors. We analysed some additional results of astronomical observations that could be explained by axion interpretation of the PVLAS data: a sharp steepening of the quasi-stellar object (QSO) continuum shortward of ≃1100 Å, observed circular polarization of active galactic nuclei (AGNs) and QSOs, discrepancy between observed intrinsic polarization of stars in the Local Bubble and stellar spectral classification. The observed polarization of stars in the Local Bubble cannot be explained by interstellar origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号