首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2006—2011年西藏纳木错湖冰状况及其影响因素分析   总被引:2,自引:0,他引:2       下载免费PDF全文
湖冰是气候变化的指示器,为分析纳木错地区气候对湖冰冰情的影响,利用2006—2011年西藏纳木错(面积2000km2)和白马纳木错(面积1.45 km2)湖冰的观测资料,结合MODIS遥感影像资料分析了两个湖泊完全冻结日期、完全解冻日期、封冻期、湖冰厚度的状况及其与气温和风速的关系。纳木错湖湖冰冰情主要受气温的影响,同时也受风速的影响。纳木错湖的完全冻结日期集中在2月,完全解冻日期在5月中旬,封冻期平均天数为90 d,封冻期与冬季负积温具有较好的对应关系。面积较小的白马纳木错冰情的年际波动较大,其平均封冻期为124 d。纳木错湖的最大冰厚一般出现在3月,其厚度为58~65 cm。  相似文献   

2.
In order to extend the Tallinn temperature series backward in time, three different climate proxies were used. These were: the first day of ice break-up in Tallinn port, a proxy for the mean winter air temperature (December to March); the first day of ice break-up on the rivers in northern Estonia, a proxy for the beginning of spring; and, the first day of the rye harvest, a proxy for the mean air temperature in spring and summer (April to July). On the basis of these proxies the mean winter temperature could be extended back to the year AD 1500, and the spring and summer temperature back to 1731. The series of winter temperatures was analysed for long-term trends and variations on different timescales. The most striking feature is the warming of the winters from about the mid nineteenth century to the present. The warming is especially noticeable over the latest decades. The climate from the start of the series (AD 1500) to the mid nineteenth century was in general somewhat colder, and should be recognised as a part of the Little Ice Age, though the period was intercepted by warmer winters in the first half of the eighteenth century.  相似文献   

3.
Lake ice records used to detect historical and future climatic changes   总被引:1,自引:0,他引:1  
Historical ice records, such as freeze and breakup dates and the total duration of ice cover, can be used as a quantitative indicator of climatic change if long homogeneous records exist and if the records can be calibrated in terms of climatic changes. Lake Mendota, Wisconsin, has the longest uninterrupted ice records available for any lake in North America dating back to 1855. These records extend back prior to any reliable air temperature data in the midwestern region of the U.S. and demonstrate significant warming of approximately 1.5 °C in fall and early winter temperatures and 2.5 °C in winter and spring temperatures during the past 135 years. These changes are not completely monotonie, but rather appear as two shorter periods of climatic change in the longer record. The first change was between 1875 and 1890, when fall, winter, and spring air temperatures increased by approximately 1.5 °C. The second change, earlier ice breakup dates since 1979, was caused by a significant increase in winter and early spring air temperatures of approximately 1.3 °C. This change may be indicative of shifts in regional climatic patterns associated with global warming, possibly associated with the Greenhouse Effect.With the relationships between air temperature and freeze and break up dates, we can project how the ice cover of Lake Mendota should respond to future climatic changes. If warming occurs, the ice cover for Lake Mendota should decrease approximately 11 days per 1 °C increase. With a warming of 4 to 5 °C, years with no ice cover should occur in approximately 1 out of 15 to 30 years.  相似文献   

4.
Corey Lang 《Climatic change》2014,125(3-4):291-303
Learning about the causes and consequences of climate change can be an important avenue for supporting mitigation policy and efficient adaptation. This paper uses internet search activity data, a distinctly revealed preference approach, to examine if local weather fluctuations cause people to seek information about climate change. The results suggest that weather fluctuations do have an effect on climate change related search behavior, however not always in ways that are consistent with the projected impacts of climate change. While search activity increases with extreme heat in summer and extended periods of no rainfall and declines in extreme cold in winter, search activity also increases with colder winter and spring average temperatures. Some of the surprising results are magnified when heterogeneity by political ideology and educational attainment in responsiveness is modeled, which could suggest that different people have different perceptions about what types of weather define climate change or that climate science deniers seek information through Google. However, the results also indicate that for all groups in the political and educational spectrum, there exist weather events consistent with the predicted impacts of climate change that elicit increased information seeking.  相似文献   

5.
Future climate scenarios projected by three different General Circulation Models and a delta-change methodology are used as input to the Generalized Watershed Loading Functions – Variable Source Area (GWLF-VSA) watershed model to simulate future inflows to reservoirs that are part of the New York City water supply system (NYCWSS). These inflows are in turn used as part of the NYC OASIS model designed to simulate operations for the NYCWSS. In this study future demands and operation rules are assumed stationary and future climate variability is based on historical data to which change factors were applied in order to develop the future scenarios. Our results for the West of Hudson portion of the NYCWSS suggest that future climate change will impact regional hydrology on a seasonal basis. The combined effect of projected increases in winter air temperatures, increased winter rain, and earlier snowmelt results in more runoff occurring during winter and slightly less runoff in early spring, increased spring and summer evapotranspiration, and reduction in number of days the system is under drought conditions. At subsystem level reservoir storages, water releases and spills appear to be higher and less variable during the winter months and are slightly reduced during summer. Under the projected future climate and assumptions in this study the NYC reservoir system continues to show high resilience, high annual reliability and relatively low vulnerability.  相似文献   

6.
Abstract

The spatial and temporal relationships between subarctic Canadian sea‐ice cover and atmospheric forcing are investigated by analysing sea‐ice concentration, sea‐level pressure and surface air temperature data from 1953 to 1988. The sea‐ice anomalies in Hudson Bay, Baffin Bay and the Labrador Sea are found to be related to the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO). Through a spatial Student's i‐test and a Monte Carlo simulation, it is found that sea‐ice cover in both Hudson Bay and the Baffin Bay‐Labrador Sea region responds to a Low/Wet episode of the SO (defined as the period when the SO index becomes negative) mainly in summer. In this case, the sea‐ice cover has a large positive anomaly that starts in summer and continues through to autumn. The ice anomaly is attributed to the negative anomalies in the regional surface air temperature record during the summer and autumn when the Low/Wet episode is developing. During strong winter westerly wind events of the NAO, the Baffin Bay‐Labrador Sea ice cover in winter and spring has a positive anomaly due to the associated negative anomaly in surface air temperature. During the years in which strong westerly NAO and Low/Wet SO events occur simultaneously (as in 1972/73 and 1982/83), the sea ice is found to have large positive anomalies in the study region; in particular, such anomalies occurred for a major portion of one of the two years. A spectral analysis shows that sea‐ice fluctuations in the Baffin Bay‐Labrador Sea region respond to the SO and surface air temperature at about 1.7‐, 5‐ and 10‐year periods. In addition, a noticeable sea‐ice change was found (i.e. more polynyas occurred) around the time of the so‐called “climate jump” during the early 1960s. Data on ice thickness and on ice‐melt dates from Hudson Bay are also used to verify some of the above findings.  相似文献   

7.
In December 1985, an automated meteorological station was established at Lake Hoare in the dry valley region of Antarctica. Here, we report on the first year-round observations available for any site in Taylor Valley. This dataset augments the year-round data obtained at Lake Vanda (Wright Valley) by winter-over crews during the late 1960s and early 1970s. The mean annual solar flux at Lake Hoare was 92 W m-2 during 1986, the mean air temperature -17.3 degrees C, and the mean 3-m wind speed 3.3 m s-1. The local climate is controlled by the wind regime during the 4-month sunless winter and by seasonal and diurnal variations in the incident solar flux during the remainder of the year. Temperature increases of 20 degrees-30 degrees C are frequently observed during the winter due to strong f?hn winds descending from the Polar Plateau. A model incorporating nonsteady molecular diffusion into Kolmogorov-scale eddies in the interfacial layer and similarity-theory flux-profiles in the surface sublayer, is used to determine the rate of ice sublimation from the acquired meteorological data. Despite the frequent occurrence of strong winter f?hns, the bulk of the annual ablation occurs during the summer due to elevated temperatures and persistent moderate winds. The annual ablation from Lake Hoare is estimated to have been 35.0 +/- 6.3 cm for 1986.  相似文献   

8.
Ecosystems in biogeographical transition zones, or ecotones, tend to be highly sensitive to climate and can provide early indications of future change. To evaluate recent climatic changes and their impacts in a boreal-temperate ecotone in eastern North America, we analyzed ice phenology records (1975?C2007) for five lakes in the Adirondack Mountains of northern New York State. We observed rapidly decreasing trends of up to 21?days less ice cover, mostly due to later freeze-up and partially due to earlier break-up. To evaluate the local drivers of these lake ice changes, we modeled ice phenology based on local climate data, derived climatic predictors from the models, and evaluated trends in those predictors to determine which were responsible for observed changes in lake ice. November and December temperature and snow depth consistently predicted ice-in, and recent trends of warming and decreasing snow during these months were consistent with later ice formation. March and April temperature and snow depth consistently predicted ice-out, but the absence of trends in snow depth during these months, despite concurrent warming, resulted in much weaker trends for ice-out. Recent rates of warming in the Adirondacks are among the highest regionally, although with a different seasonality of changes (early winter > late winter) that is consistent with other lake ice records in the surrounding area. Projected future declines in snow cover could create positive feedbacks and accelerate current rates of ice loss due to warming. Climate sensitivity was greatest for the larger lakes in our study, including Wolf Lake, considered one of the most ecologically intact ??wilderness lakes?? in eastern North America. Our study provides further evidence of climate sensitivity of the boreal-temperate ecotone of eastern North America and points to emergent conservation challenges posed by climate change in legally protected yet vulnerable landscapes like the Adirondack Park.  相似文献   

9.
The long-term ice record (from 1964 to 2008) of an Arctic lake in northern Europe (Lake Kilpisj?rvi) reveals the response of lake ice to climate change at local and regional scales. Average freeze-up and ice breakup occurred on 9 November and 19 June, respectively. The freeze-up has been significantly delayed at a rate of 2.3 d per decade from 1964 onward (P?<?0.05). No significant change has taken place in ice breakup. Annual average ice thickness has become smaller since the mid-1980s (P?<?0.05). Air temperature during the early ice season significantly affected the ice thickness. The freeze-up date exhibits the highest correlation with the 2-month average daily minimum air temperature centered at the end of October, while the ice breakup date exhibits the highest correlation with the 2-month average daily maximal air temperature centered in mid May. A 1°C increase in the surface air temperature corresponds to a freeze-up later by 3.4?days and an ice breakup earlier by 3.6?days. Snow cover is a critical factor in lake-ice climatology. For cumulative November to March precipitation of less than 0.13?m, the insulating effect of the snow dominated, while higher rates of precipitation favored thicker ice due to the formation of snow ice. Variations in ice records of Lake Kilpisj?rvi can serve as an indicator of climate variations across the northern Europe. The North Atlantic Oscillation (NAO) does not significantly affect the ice season there, although both the local air temperatures and winter precipitation contain a strong NAO signal.  相似文献   

10.
Climate change has an indirect effect on water quality in freshwater ecosystems, but it is difficult to assess the contribution of climate change to the complex system. This study explored to what extent climatic indicators (air temperature, wind speed, and rainfall) influence nutrients and oxygen levels in a shallow reservoir, Yuqiao Reservoir, China. The study comprises three parts—describing the temporal trends of climatic indicators and water quality parameters during the period 1992–2011, analyzing the potential impacts of climate on water quality, and finally developing a quantitative assessment to evaluate how climatic factors govern nutrient levels in the reservoir. Our analyses showed that the reservoir experienced substantial cold periods (1992–2001) followed by a warm period (2002–2011). The results showed that increasing air temperature in spring, autumn, and winter and increasing annual wind speed decrease total phosphorus (TP) concentration in the reservoir in spring, summer, and winter. According to the quantitative assessment, the increase in air temperature in spring and winter had a larger contribution to the decrease in TP concentration (47.2 and 64.1%), compared with the influence from decreased wind speed and rainfall. The field data suggest that nutrients decline due to enhanced uptake by macrophytes in years when spring was warmer and the macrophytes started to grow earlier in the season. The increasing wind speed and air temperature in spring also significantly contribute to the increase in dissolved oxygen concentration. This study helps managers to foresee how potential future climate change might influence water quality in similar lake ecosystems.  相似文献   

11.
Observed climate variability and change in Urmia Lake Basin, Iran   总被引:4,自引:2,他引:2  
This paper analyzes climate variability and change in the Urmia Lake Basin, northwest of Iran. Annual average of the following data time series has been analyzed by statistical methods: dry bulb temperature, maximum and minimum temperature, precipitation, and number of rainy and snowy days. We have also used mean monthly temperature and precipitation data for analysis of drought spells for the period 1964–2005 to find out whether fluctuations in the lake level are attributable to natural drought. Our results indicate that mean precipitation has decreased by 9.2 % and the average maximum temperature has increased by 0.8°C over these four decades. The seasonal changes are particularly visible in winter and spring. Results of the Palmer Drought Severity Index show that on average, drought episodes have hit the Urmia Lake Basin every 5 years and most of them reached severe levels, but recent droughts have become more intense and last longer.  相似文献   

12.
Statistical ice cover models were used to project daily mean basin ice cover and annual ice cover duration for Lakes Superior and Erie. Models were applied to a 1951–80 base period and to three 30-year steady double carbon dioxide (2 × CO2) scenarios produced by the Geophysical Fluid Dynamics Laboratory (GFDL), the Goddard Institute of Space Studies (GISS), and the Oregon State University (OSU) general circulation models. Ice cover estimates were made for the West, Central, and East Basins of Lake Erie and for the West, East, and Whitefish Bay Basins of Lake Superior. Average ice cover duration for the 1951– 80 base period ranged from 13 to 16 weeks for individual lake basins. Reductions in average ice cover duration under the three 2 × CO2 scenarios for individual lake basins ranged from 5 to 12 weeks for the OSU scenario, 8 to 13 weeks for the GISS scenario, and 11 to 13 weeks for GFDL scenario. Winters without ice formation become common for Lake Superior under the GFDL scenario and under all three 2 × CO2 scenarios for the Central and East Basins of Lake Erie. During an average 2 × CO2 winter, ice cover would be limited to the shallow areas of Lakes Erie and Superior. Because of uncertainties in the ice cover models, the results given here represent only a first approximation and are likely to represent an upper limit of the extent and duration of ice cover under the climate change projected by the three 2 × CO2scenarios. Notwithstanding these limitations, ice cover projected by the 2 × CO2 scenarios provides a preliminary assessment of the potential sensitivity of the Great Lakes ice cover to global warming. Potential environmental and socioeconomic impacts of a 2 × CO2 warming include year-round navigation, change in abundance of some fish species in the Great Lakes, discontinuation or reduction of winter recreational activities, and an increase in winter lake evaporation.  相似文献   

13.
This paper provides both a detailed history of environmental change in the Sierra Nevada over the past 1,800 years and evidence for climate teleconnections between the Sierra Nevada and Greenland during the late Holocene. A review of Greenland ice core data suggests that the magnitudes of abrupt changes in temperature and precipitation increased beginning c. 3,700 and 3,000 years ago, respectively. Precipitation increased abruptly 1,300 years ago. Comparing paleotemperature data from Cirque Peak, CA with paleoprecipitation data from Pyramid Lake, NV suggests that hot temperatures occurred at the beginnings of most severe droughts in the Sierra Nevada over the past 1,800 years. Severe fires and erosion also occurred at Coburn Lake, CA at the beginning of all severe droughts in the Sierra Nevada over the past 1,800 years. This suggests that abrupt climate change during the late Holocene caused vegetation and mountain slopes in some areas to be out of equilibrium with abruptly changed climates. Finally, the ending of drought conditions in Greenland coincided with the beginning of drought conditions in the Sierra Nevada over the past 1,800 years, perhaps as a result of the rapidly changed locations of the Earth??s major precipitation belts during abrupt climate change events.  相似文献   

14.
Three cold events (the Younger Dryas, 9.4 ka cal BP, 5.8 ka cal BP) since the 13 ka cal BP in Erhai (EH) Lake catchment, Yunnan Province, were analyzed using the Total Organic Carbon (TOC) series of the EH core. By comparison of the EH core, Qinghai Lake core and Guliya ice core, differences of these cold events were determined. Erhai Lake's responses to the global cold events were lagged in time and weakened in intensity in comparison with Qinghai Lake's. The latitude location of Erhai Lake and the obstruction of Tibetan Plateau may in part explain the differences. However, the remarkable cold event of 8.2 ka cal BP in the Guliya ice core was absent in the records of Erhai Lake and Qinghai Lake. Power spectrum analysis of the TOC proxy series shows that there were three kinds of millennial cycles, i.e. 5 ka, 2.3 ka, and 1.5 ka, in climate changes in Erhai Lake, which reveal the responses of climate to suborbit cycles.  相似文献   

15.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

16.
我国2000年干旱情况分析及发展趋势展望   总被引:2,自引:0,他引:2  
重点分析了2000年2 ̄7月份我国北方高温少雨的时空分布特征,并与国外及我国历史上的干旱特征进行了对比;从大气环流、海洋、天气气候及全球变化的角度初步探讨了干旱的成因;回顾了今年春、夏季北方少雨(干旱)的预报服务情况,并初步展望了未来秋、冬、春季降水趋势;建议在制订相应应急政策、加强保护生态环境及水资源的同时,加强气象部门对人工影响天气、干旱预警系统及干旱机理等方面的业务建设和科学研究。  相似文献   

17.
1961—2017年云南季节变化特征分析   总被引:1,自引:0,他引:1  
姚愚  李蕊  郑建萌  刘金福 《气象科学》2020,40(6):849-858
参照《中华人民共和国气象行业标准-气候季节划分》(QX/T 152-2012)中关于气候季节的定义标准,利用1961-2017年云南122个气象站的气温资料,分析了云南的气候季节区域的空间分布和季节开始日期及长度的变化趋势。云南共有4种气候季节区域,分别是四季分明区、无夏区、无冬区和常春区。无夏区范围最广,无冬区其次。不同年代四种季节气候区域空间分布范围不尽相同,无夏区和无冬区空间范围变化最显著。2011年以后云南出现四季分明区范围明显增大的现象,这与近年来气候变暖背景下云南气温年较差增大的观测事实相一致。云南四季分明区春季和秋季较长,夏季和冬季较短。无夏区秋季最长、春季次之、冬季最短。无冬区夏季最长、春季和秋季长度接近。不同气候季节区域间春季和夏季开始日期的变化均呈提早趋势,秋季和冬季开始日期有推迟的趋势;在季节长度变化上,夏季增长,冬季变短,但春秋季长度的变化不尽相同。  相似文献   

18.
我国强降雪气候特征及其变化   总被引:5,自引:2,他引:5       下载免费PDF全文
基于全国气象台站逐日地面降雪观测数据,对我国25°N以北不同气候区强降雪事件的地理分布和年内旬、月变化等气候特征进行分析,并探讨1961—2008年其时间序列演变特征,及1961—2008年和1981—2008年 (气候变暖后) 气候变化趋势。结果表明:强降雪量和强降雪日数在青藏高原东部、新疆和东北北部最多;强降雪强度高值中心出现在云南。东北北部、华北、西北、青藏高原东部强降雪事件多发生于初冬和初春,年内分布呈双峰型;新疆和黄淮地区年内分布呈单峰型,前者多发生在隆冬时节,后者多发生于晚冬;1961—2008年东北北部、新疆、青藏高原东部平均强降雪量和强降雪日数呈明显增加趋势;气候变暖后我国大部年强降雪量增多,强降雪日数增加,强降雪强度增强。  相似文献   

19.
近60a来洞庭湖区气温的变化特征   总被引:1,自引:1,他引:1  
以洞庭湖区24个气象站1952-2010年的平均气温资料为基础,利用气候倾向率、Mann-Kendall突变检验法和小波分析等方法,分析了洞庭湖区的气温变化特征.结果表明:洞庭湖区年平均、冬季、春季和秋季气温均呈显著上升趋势,增温速率尤以冬季和春季为甚.除夏季外,年平均和其他各季气温在1990s,先后发生增温性突变.高温日数呈上升趋势,但显著性不明显,低温日数下降趋势非常显著.除夏季外,年平均和各季异常冷年,基本出现在1950s至1970s,异常暖年,均出现在1998年以后.除夏季外,各季气温均存在准9a周期.  相似文献   

20.
根据丽水市国家气象观测站1953-2010年逐日气温资料,运用趋势分析、Morlet小波变化和Mann-Kendall检验对四季起始日期的气候变化特征、趋势演变规律和突变转折情况进行了研究。结果表明:四季起始日期,春季约在3月中旬,夏季在5月底,秋季在9月下旬,冬季在11月下旬,且春、秋季的长度较短,只有2个月左右,夏、冬季的长度较长,长达4个月。Morlet小波分析四季起始日期的周期变化特征,主要体现在年代际时间尺度上,且各周期强度有所差异,预测春、夏季起始日将按照提前趋势发展,秋、冬季起始日继续延后状态。Mann-Kendall检验得出,春、夏两季起始日期在21世纪初发生由推后转向提前的突变,而秋、冬两季起始日突变点都体现在20世纪60年代。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号