首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Few assessments of species vulnerability to climate change used to inform conservation management consider the intrinsic traits that shape species’ capacity to respond to climate change. This omission is problematic as it may result in management actions that are not optimised for the long-term persistence of species as climates shift. We present a tool for explicitly linking data on plant species’ life history traits and range characteristics to appropriate management actions that maximise their capacity to respond to climate change. We deliberately target data on easily measured and widely available traits (e.g. dispersal syndrome, height, longevity) and range characteristics (e.g. range size, climatic/soil niche breadth), to allow for rapid comparison across many species. We test this framework on 1237 plants, categorising species on the basis of their potential climate change risk as related to four factors affecting their response capacity: reproduction, movement capability, abiotic niche specialisation and spatial coverage. Based on these four factors, species were allocated risk scores, and these were used to test the hypothesis that the current protection status under national legislation and related management actions capture species response capacity to climate change. Our results indicate that 20% of the plant species analysed (242 species) are likely to have a low capacity to respond to climate change based on the traits assessed, and are therefore at high risk. Of the 242 high risk species, only 10% (24 species) are currently listed for protection under conservation legislation. Importantly, many management plans for these listed species fail to address the capacity of species to respond to climate change with appropriate actions: 70% of approved management plans do not include crucial actions which may improve species’ ability to adapt to climate change. We illustrate how the use of easily attainable traits associated with ecological and evolutionary responses to changing environmental conditions can inform conservation actions for plant species globally.  相似文献   

2.
Jan Beck 《Climatic change》2013,116(2):177-189
The susceptibility of agriculture to changing environmental conditions is arguably the most dangerous short-term consequence of climate change, and predictions on the geography of changes will be useful for implementing mitigation strategies. Ecological niche modeling (ENM) is a technique used to relate presence records of species to environmental variables. By extrapolation, ENM maps the suitability of a landscape for the species in question. Recently, ENM was successfully applied to predict the geographic distribution of agriculture. Using climate and soil conditions as predictor variables, agricultural suitability was mapped across the Old World. Here, I present analogous ENM-based maps of the suitability for agriculture under climate change scenarios for the year 2050. Deviations of predicted scenarios from a current conditions model were analyzed by (1) comparing relative average change across regions, and (2) by relating country-wide changes to the data indicative of the wealth of nations. The findings indicate that different regions vary considerably in whether they win or lose in agricultural suitability, even if average change across the entire study region is small. A positive relationship between the wealth of nations and change in agriculture conditions was found, but variability around this trend was high. Parts of Africa, Europe and southern and eastern Asia were predicted to be particularly negatively affected, while north-eastern Europe, among other regions, can expect more favorable conditions for agriculture. The results are presented as an independent “second opinion” to previously published, more complex forecasts on agricultural productivity and food supply variability due to climatic change, which were based on fitting environmental variables to yield statistics.  相似文献   

3.
Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is currently water-limited, growth is likely to decline due to increased summer water deficit. Second, we use existing analyses of climatic controls on tree species biogeography to demonstrate that by the mid twenty-first century, climate will be less suitable for key species in some areas of Washington. Third, we examine the relationships between climate and the area burned by fire and project climatically driven regional and sub-regional increases in area burned. Fourth, we suggest that climatic change influences mountain pine beetle (MPB) outbreaks by increasing host-tree vulnerability and by shifting the region of climate suitability upward in elevation. The increased rates of disturbance by fire and mountain pine beetle are likely to be more significant agents of changes in forests in the twenty-first century than species turnover or declines in productivity, suggesting that understanding future disturbance regimes is critical for successful adaptation to climate change.  相似文献   

4.
Delineating geographic shifts in crop cultivation under future climate conditions provides information for land use and water management planning, and insights to meeting future demand. A suitability modeling approach was used to map the thermal niche of almond cultivation and phenological development across the Western United States (US) through the mid-21st century. The Central Valley of California remains thermally suitable for almond cultivation through the mid-21st century, and opportunities for expansion appear in the Willamette Valley of western Oregon, which is currently limited by insufficient heat accumulation. Modeled almond phenology shows a compression in reproductive development under future climate. By the mid-21st century, almond phenology in the Central Valley showed ~?2-week delay in chill accumulation and ~?1- and ~?2.5-week advance in the timing of bloom and harvest, respectively. Although other climatic and non-climatic restrictions to almond cultivation may exist, these results highlight opportunities for shifts in the geography of high-value cropping systems, which may influence growers’ long-term land use decisions, and shape regional water and agricultural industry discussions regarding climate change adaptation options.  相似文献   

5.
河南省棉花气候适宜度变化趋势分析   总被引:24,自引:1,他引:24       下载免费PDF全文
结合前人的研究确立河南省棉花气候适宜度模型, 对所选46个站点1961—2000年的适宜度进行计算, 分析1961—2000年全省及各站点适宜度的变化趋势, 表明1981—2000年适宜度变化趋势显著。对1981—2000年各站点适宜度的变化趋势根据变化的方向和强度进行分类, 将河南省划分为适宜度强增长型、弱增长型、减弱型。分析结果表明:河南省棉花气候适宜度总体呈下降的变化趋势, 各地的变化趋势依据热量带和地形地貌的不同有明显的地域差异。结合各地1981—2000年的气候资料对各类型的气候适宜度变化原因进行了初步分析。  相似文献   

6.
The forest model ForClim was used to evaluate the applicability of gap models in complex topography when the climatic input data is provided by a global database of 0.5° resolution. The analysis was based on 12 grid cells along an altitudinal gradient in the European Alps. Forest dynamics were studied both under current climate as well as under four prescribed 2 × CO2 scenarios of climatic change obtained from General Circulation Models, which allowed to assess the sensitivity of mountainous forests to climatic change.Under current climate, ForClim produces plausible patterns of species composition in space and time, although the results for single grid cells sometimes are not representative of reality due to the limited precision of the climatic input data.Under the scenarios of climatic change, three responses of the vegetation are observed, i.e., afforestation, gradual changes of the species composition, and dieback of today's forest. In some cases widely differing species compositions are obtained depending on the climate scenario used, suggesting that mountainous forests are quite sensitive to climatic change. Some of the new forests have analogs on the modern landscape, but in other cases non-analog communities are formed, pointing at the importance of the individualistic response of species to climate.The applicability of gap models on a regular grid in a complex topography is discussed. It is concluded that for their application on a continental scale, it would be desirable to replace the species in the models by plant functional types. It is suggested that simulation studies like the present one must not be interpreted as predictions of the future fate of forests, but as means to assess their sensitivity to climatic change.  相似文献   

7.
Ghana and Côte d’Ivoire are the world’s leading cocoa (Thebroma cacao) producing countries; together they produce 53 % of the world’s cocoa. Cocoa contributes 7.5 % of the Gross Domestic Product (GDP) of Côte d’Ivoire and 3.4 % of that of Ghana and is an important cash crop for the rural population in the forest zones of these countries. If progressive climate change affected the climatic suitability for cocoa in West Africa, this would have implications for global cocoa output as well as the national economies and farmer livelihoods, with potential repercussions for forests and natural habitat as cocoa growing regions expand, shrink or shift. The objective of this paper is to present future climate scenarios for the main cocoa growing regions of Ghana and Côte d’Ivoire and to predict their impact on the relative suitability of these regions for growing cocoa. These analyses are intended to support the respective countries and supply chain actors in developing strategies for reducing the vulnerability of the cocoa sector to climate change. Based on the current distribution of cocoa growing areas and climate change predictions from 19 Global Circulation Models, we predict changes in relative climatic suitability for cocoa for 2050 using an adapted MAXENT model. According to the model, some current cocoa producing areas will become unsuitable (Lagunes and Sud-Comoe in Côte d’Ivoire) requiring crop change, while other areas will require adaptations in agronomic management, and in yet others the climatic suitability for growing cocoa will increase (Kwahu Plateu in Ghana and southwestern Côte d’Ivoire). We recommend the development of site-specific strategies to reduce the vulnerability of cocoa farmers and the sector to future climate change.  相似文献   

8.
Projected shifts of wine regions in response to climate change   总被引:1,自引:1,他引:0  
This research simulates the impact of climate change on the distribution of the most important European wine regions using a comprehensive suite of spatially informative layers, including bioclimatic indices and water deficit, as predictor variables. More specifically, a machine learning approach (Random Forest, RF) was first calibrated for the present period and applied to future climate conditions as simulated by HadCM3 General Circulation Model (GCM) to predict the possible spatial expansion and/or shift in potential grapevine cultivated area in 2020 and 2050 under A2 and B2 SRES scenarios. Projected changes in climate depicted by the GCM and SRES scenarios results in a progressive warming in all bioclimatic indices as well as increasing water deficit over the European domain, altering the climatic profile of each of the grapevine cultivated areas. The two main responses to these warmer and drier conditions are 1) progressive shifts of existing grapevine cultivated area to the north–northwest of their original ranges, and 2) expansion or contraction of the wine regions due to changes in within region suitability for grapevine cultivation. Wine regions with climatic conditions from the Mediterranean basin today (e.g., the Languedoc, Provence, Côtes Rhône Méridionales, etc.) were shown to potentially shift the most over time. Overall the results show the potential for a dramatic change in the landscape for winegrape production in Europe due to changes in climate.  相似文献   

9.
The degree of general applicability across Europe currently achieved with several forest succession models is assessed, data needs and steps for further model development are identified and the role physiology based models can play in this process is evaluated. To this end, six forest succession models (DISCFORM, ForClim, FORSKA-M, GUESS, PICUS v1.2, SIERRA) are applied to simulate stand structure and species composition at 5 European pristine forest sites in different climatic regions. The models are initialized with site-specific soil information and driven with climate data from nearby weather stations. Predicted species composition and stand structure are compared to inventory data. Similarity and dissimilarity in the model results under current climatic conditions as well as the predicted responses to six climate change scenarios are discussed. All models produce good results in the prediction of the right tree functional types. In about half the cases, the dominating species are predicted correctly under the current climate. Where deviations occur, they often represent a shift of the species spectrum towards more drought tolerant species. Results for climate change scenarios indicate temperature driven changes in the alpine elevational vegetation belts at humid sites and a high sensitivity of forest composition and biomass of boreal and temperate deciduous forests to changes in precipitation as mediated by summer drought. Restricted generality of the models is found insofar as models originally developed for alpine conditions clearly perform better at alpine sites than at boreal sites, and vice versa. We conclude that both the models and the input data need to be improved before the models can be used for a robust evaluation of forest dynamics under climate change scenarios across Europe. Recommendations for model improvements, further model testing and the use of physiology based succession models are made.  相似文献   

10.
Climate induced changes of temperature, discharge and nitrogen concentration may change natural denitrification processes in river systems. Until now seasonal variation of N-retention by denitrification under different climate scenarios and the impact of river morphology on denitrification have not been thoroughly investigated. In this study climate scenarios (dry, medium and wet) have been used to characterize changing climatic and flow conditions for the period 2050–2054 in the 4th order stream Weiße Elster, Germany. Present and future periods of nitrogen turnover were simulated with the WASP5 river water quality model. Results revealed that, for a dry climate scenario, the mean denitrification rate was 71% higher in summer (low flow period between 2050 and 2054) and 51% higher in winter (high flow period) compared to the reference period. For the medium and wet climate scenarios, denitrification was slightly higher in summer (3% and 4%) and lower in winter (9% and 3% for medium and wet scenarios, respectively). Additionally, the variability of denitrification rates was higher in summer compared to winter conditions. For a natural river section, denitrification was a factor of 1.22 higher than for a canalized river reach. Besides, weirs along the river decrease the denitrification rate by 16% in July for dry scenario conditions. In the 42 km study reach, N-retention through denitrification amounted to 5.1% of the upper boundary N load during summer low flow conditions in the reference period. For the future dry climate scenario this value increased up to 10.2% and for the medium climate scenario up to 5.4%. In our case study the investigated climate scenarios showed that future discharge changes may have a larger impact on denitrification rates than future temperature changes. Overall results of the study revealed the significance of climate change in regulating the magnitude, seasonal pattern and variability of nitrogen retention. The results provide guidance for managing nitrogen related environmental problems for present and future climate conditions.  相似文献   

11.
分析气候变化对动物分布的影响,对气候变化影响下保护生物多样性具有重要的意义。利用CART(classification and regression tree,分类和回归树)生态位模型,采用A1、A2、B1和B2气候变化情景,模拟分析了气候变化对我国滇金丝猴分布范围及空间格局的影响趋势。结果显示:气候变化后,滇金丝猴目前适宜分布范围将减小,新适宜及总适宜范围将扩大,在1991-2020年时段较大,从1991-2020年时段到2081-2100年时段随气候变化时间段延长而逐渐缩小,其中A1情景下变化最大,B1情景下变化最小。气候变化后,滇金丝猴目前适宜分布区东北部及南部适宜范围将缩小,西部和西北及东南部适宜范围将扩大。气候变化后,滇金丝猴目前适宜、新适宜和总适宜分布区范围与我国年均气温和年降水量变化呈负相关。多元回归分析表明,滇金丝猴目前适宜、新适宜和总适宜分布范围均随我国年均气温升高和年降水量增加而减少,其中气温变化影响比降水量变化影响大。因此,气候变化后,近期将使滇金丝猴目前分布适宜分布范围减少,新适宜分布范围将扩大,随气候变化程度增强,新适宜及总适宜分布范围都将减小。  相似文献   

12.
A shift in climatic conditions may directly modify critical organismal traits (such as reproductive output and offspring phenotypes), and experimental studies to document such direct effects thus may clarify the impacts of climate change on the species involved. The endangered Blue Mountains Water Skink (Eulamprus leuraensis) exhibits several traits predicted to imperil it under climate change: ectothermy, low reproductive output, specialisation to a restricted habitat type, montane endemicity, and a small geographic range. Congeneric species exhibit temperature-dependent sex determination, increasing potential sensitivity to climate change. We maintained wild-caught female lizards throughout pregnancy under thermal conditions simulating a shift in basking-time availability (3 vs 7 h/day) as might occur under climate change. Females with longer basking opportunities per day gave birth 2 weeks earlier, to slightly smaller offspring, that grew much faster in the first few weeks of life. Importantly, offspring sex ratios were not affected by maternal thermal regimes. Hence, some traits (e.g., offspring size, growth rates, dates of birth) are sensitive to ambient thermal conditions whereas other traits (e.g., offspring sex ratio and sprint speed) are not. On balance, the greatest threat to population persistence for E. leuraensis under climate change is likely to involve indirect effects mediated via habitat degradation (especially, drying-out of the hanging swamps) rather than direct thermal effects on lizard reproductive output or offspring phenotypes.  相似文献   

13.
Climate is an important resource for many types of tourism. One of several metrics for the suitability of climate for sightseeing is Mieczkowski’s “Tourism Climatic Index” (TCI), which summarizes and combines seven climate variables. By means of the TCI, we analyse the present climate resources for tourism in Europe and projected changes under future climate change. We use daily data from five regional climate models and compare the reference period 1961–1990 to the A2 scenario in 2071–2100. A comparison of the TCI based on reanalysis data and model simulations for the reference period shows that current regional climate models capture the important climatic patterns. Currently, climate resources are best in Southern Europe and deteriorate with increasing latitude and altitude. With climate change the latitudinal band of favourable climate is projected to shift northward improving climate resources in Northern and Central Europe in most seasons. Southern Europe’s suitability for sightseeing tourism drops strikingly in the summer holiday months but is partially compensated by considerable improvements between October and April.  相似文献   

14.
未来气候变化对东北玉米品种布局的影响   总被引:4,自引:1,他引:3       下载免费PDF全文
为探求未来气候变化对我国东北玉米品种布局的影响,基于玉米生产潜力和气候资源利用率,结合区域气候模式输出的2011—2099年RCP_4.5,RCP_8.5两种气候背景气象资料和1961—2010年我国东北地区91个气象站的观测数据,分析了未来气候变化情况下,东北玉米品种布局、生产潜力、气候资源利用率的时空变化。结果表明:未来东北地区玉米可种植边界北移东扩,南部为晚熟品种,新扩展区域以早熟品种为主,不能种植区域减少。未来玉米生产潜力为南高北低,增加速率均高于历史情景,水分适宜度最低,而历史情景下温度是胁迫玉米生产的关键因子。未来东北玉米对气候资源利用率整体下降,其中RCP8.5情景利用率最低。  相似文献   

15.
Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area’s historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area’s climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.  相似文献   

16.
为探究气候变化对南方柑橘种植气候适宜性的影响,基于气候适宜度函数建立柑橘发育期温度、降水、日照以及综合适宜度模型,对南方柑橘种植区近60年(1960-2019年)361个气象站观测数据进行精细化插值(Anusplin插值)并计算气候适宜度,采用自然断点法分4个等级对柑橘种植区进行气候区划,并分前、后30年对比分析研究区...  相似文献   

17.
Today’s forests are largely viewed as a natural asset, growing in a climate envelope, which favors natural regeneration of species that have adapted and survived the variability’s of past climates. However, human-induced climate change, variability and extremes are no longer a theoretical concept. It is a real issue affecting all biological systems. Atmospheric scientists, using global climate models, have developed scenarios of the future climate that far exceed the traditional climate envelope and their associated forest management practices. Not all forests are alike, nor do they share the same adaptive life cycles, feedbacks and threats. Much of tomorrow’s forests will become farmed forests, managed in a pro-active, designed and adaptive envelope, to sustain multiple products, values and services. Given the life cycle of most forest species, forest management systems will need to radically adjust their limits of knowledge and adaptive strategies to initiate, enhance and plan forests in relative harmony with the future climate. Protected Areas (IUCN), Global Biosphere Reserves (UNESCO) and Smithsonian Institution sites provide an effective community-based platform to monitor changes in forest species, ecosystems and biodiversity under changing climatic conditions.  相似文献   

18.
In order to better understand the effect associated with global climate change on Iran’s climate condition, it is important to quantify possible shifts in different climatic types in the future. To this end, monthly mean minimum and maximum temperature, and precipitation from 181 synoptic meteorological stations (average 1970–2005) have been collected from the meteorological organization of Iran. In this paper, to study spatial changes of Iran’s climatic zones affected by climate changes, Extended De Martonne’s classification (originally formulated by De Martonne and extended by Khalili (1992)) was used. Climate change scenarios were simulated in two future climates (average conditions during the 2050s and the 2080s) under each of the SRES A1B and A2, for the CSIRO-MK3, HadCM3, and CGCM3 climate models. Coarse outputs of GCMs were downscaled by delta method. We produced all maps for three time periods (one for the current and two for the future) according to Extended De Martonne’s classification. Finally, for each climatic zone, changes between the current and the future were compared. As the main result, simulated changes indicate shifts to warmer and drier zones. For example, in the current, extra arid-cold (A1.1m2) climate is covering the largest area of the country (21.4 %), whereas in both A1B and A2 scenarios in the 2050s and the 2080s, extra arid-moderate (A1.1m3) and extra arid-warm (A1.1m4) will be the climate and will occupy the largest area of the country, about 21 and 38 %, respectively. This analysis suggests that the global climate change will have a profound effect on the future distribution of severe aridity in Iran.  相似文献   

19.
More often than not, assessments of future climate risks are based on future climatic conditions superimposed on current socioeconomic conditions only. The new IPCC-guided alternative global development trends, the shared socioeconomic pathways (SSPs), have the potential to enhance the integration of future socioeconomic conditions—in the form of socioeconomic scenarios—within assessments of future climate risks. Being global development pathways, the SSPs lack regional and sectoral details. To increase their suitability in sectoral and/or regional studies and their relevance for local stakeholders, the SSPs have to be extended. We propose here a new method to extend the SSPs that makes use of existing scenario studies, the (re)use of which has been underestimated so far. Our approach lies in a systematic matching of multiple scenario sets that facilitates enrichment of the global SSPs with regional and sectoral information, in terms of both storylines and quantitative projections. We apply this method to develop extended SSPs of human vulnerability in Europe and to quantify them for a number of key indicators at the sub-national level up to 2050, based on the co-use of the matched scenarios’ quantitative outputs. Results show that such a method leads to internally consistent extended SSPs with detailed and highly quantified narratives that are tightly linked to global contexts. This method also provides multiple entry points where the relevance of scenarios to local stakeholders can be tested and strengthened. The extended SSPs can be readily employed to explore future populations’ vulnerability to climate hazards under varying levels of socioeconomic development.  相似文献   

20.
Climate change is likely to induce range divergence of invasive herbivore insects and native host trees given their different response rates to temperature increase. In this study we used the invasion of emerald ash borer (EAB, Agrilus planipennis Fairmaire), which is host-specific to ash (Fraxinus spp.), to demonstrate the significant implications of this climate change induced insect-host divergence for management of invasive species. The least constrained climatic limits of EAB were derived from its native range in East Asia, then projected to North America under the current and future climate conditions, and finally compared with the assumedly static ash distribution. Results suggest that the divergence between the invasion range of EAB and the distribution of ash in North America is likely to enlarge as climate change proceeds. In this case, many original ash stands could remain intact in the southern range, possibly forming refugia of the host species. The realization of this prediction, however, requires that the spread of EAB be reduced by continued management effort to allow climate change to take effect in time. Our study highlights the important role climate change has in the course of biological invasion and herbivore-host dynamics, which provides key information for continental scale pest risk prediction and strategic planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号