共查询到18条相似文献,搜索用时 98 毫秒
1.
近40a来江河源区生态环境变化的气候特征分析 总被引:57,自引:12,他引:57
利用月气象资料,对过去40a江河源气候变化特征进行分析,并与全球、全国、青藏高原进行了比较.结果表明:江河源区气温具有增暖趋势,近40a两地年平均气温分别增加约0.8℃和0.7℃,为高原异常变暖区.黄河源区变暖的主要特征是最低气温变暖,日照时数增加;最低、最高气温的显著变暖,以及较黄河源区增加更长的日照时数是长江源区变暖的主要特征.长江源区冬季变暖的作用不是主要的,春季、夏季和秋季的变暖作用比冬季还要大;黄河源区的变暖也并不主要是冬季变暖造成的,秋季变暖的作用与其相当,其它季节的变暖作用也不能忽视.近40a来江河源区降水量略有增加,主要体现在20世纪80年代中后期以来春季与冬季降水量的明显增加,夏季降水量虽然总体上没有明显变化,且局地夏季降水量呈持续减少趋势.与全球、全国以及高原区对比显示,江河源区对全球气候变暖的响应最敏感,变暖首先从长江源和整个高原发端,之后15a.黄河源和全国才进入显著温暖期.黄河源与长江源北部降水量的增加表明,气候变暖有利于高原增加降水量. 相似文献
2.
乌鲁木齐河源区气候变化和1号冰川40a观测事实 总被引:39,自引:41,他引:39
分析研究了天山冰川站自 195 9年以来的气温、降水、水文、冰川物质平衡、冰川末端变化、冰川运动和冰川面积变化观测资料 .结果表明 ,2 0世纪 90年代中期以来 ,乌鲁木齐河源区处于一个最为显著的暖湿阶段 .195 8— 2 0 0 0年的 4 2a间 ,1号冰川年平均物质平衡量为 - 188.6mm (约为 - 34.6× 10 4m3 ) ,累积物质平衡量达到 - 792 5mm ,亦即冰川减薄了 8m多 ,累积亏损量达 14 5 2× 10 4m3 .1号冰川面积在 196 2— 2 0 0 0年的 38a间减少 0 .2 2km2 ,为 11% ,并呈加速减小趋势 .196 2年至今 ,1号冰川东支末端共退缩 16 8.95m ,西支 185 .2 3m ,冰川表面运动速度减缓 .1号冰川年融水径流量有增加趋势 ,1985年前后是个分界线 ,1986— 2 0 0 1年年均径流深为 936 .7mm ,较之 195 8— 1985年的 5 0 8.4mm高出 4 2 8.3mm ,亦即增加 84 .2 % .气温持续升高 ,冰川冷储减少可能是导致冰川加速消融的重要原因 . 相似文献
3.
长江源沱沱河区45a来的气候变化特征 总被引:8,自引:3,他引:8
利用1959—2003年长江源区沱沱河气象站气温、降水、积雪等地面观测资料,对年代际的气候变化特征及其影响进行了分析.结果表明:该区域45 a来夏季增温比较明显.20世纪90年代四季平均气温、平均最高和平均最低气温比最冷的80(或60)年代偏高0.6~1.2℃;降水量(含积雪量)冬季呈增加的趋势,夏季呈减少的趋势,秋、春季降水量增加而积雪量减少;年大风日数80—90年代较60—70年代偏多.80年代是夏季温度升高、降水减少、大风日数增多的暖干气候背景,90年代以来继续加剧,并逐步扩展到春、秋季节,使得该区域的草场退化、冰川和冻土消融加快、湿地资源减少、生态环境恶化. 相似文献
4.
长江-黄河源区未来气候情景下的生态环境变化 总被引:34,自引:5,他引:34
在IPCC的情景下,青藏高原到2100年气温将上升2~3.6℃,最大的升温将出现在冬季,降水模式将会逐渐发生改变,从北部的增加到西南的减少.对于江河源区的范围,到2100年增温在2.4~3.2℃,降水量增加约-50~200mm.植被群落在气候变化条件将发生明显变化,温带草原到寒温带针叶林群落的面积增加,而温带荒漠到冰缘荒漠的面积都缩小,分布界线向更高的海拔高度迁移.到2100年气温上升3℃,降水不变则冰川长度小于4km以下的冰川大都消失,整个长江源区的冰川面积将减少约60%以上.如果考虑降水增加,冰川面积在2100年气候条件下减少约40%,将从现在的1168.18km2减少到00km2左右,冰川融水的比重也将会由现在的占河流总径流的25%下降到18%.另外,由于冰川大量退缩,草地和湿地蒸发量加大,许多湖泊将会退缩和干涸,沼泽地退化、沙化扩展,草地退化等一系列严重的生态问题将更加突出. 相似文献
5.
黄河源区水环境变化及其生态环境地质效应 总被引:9,自引:0,他引:9
为揭示黄河源区生态环境恶化的地质原因,本文依据野外调查资料,通过综合分析,认为水环境变异是源区生态环境恶化的主要原因,人类工程经济活动为次要原因.提出的"控制水文网下蚀,提高侵蚀基准面,遏制冻结层上水水位下降,恢复湿地、植被"的生态地质环境治理及保护措施具一定的应用价值. 相似文献
6.
基于MODIS资料的2000-2004年江河源区陆地植被净初级生产力分析 总被引:16,自引:2,他引:16
基于EOS/MODIS卫星遥感资料的分析表明,2000-2004年江河源地区陆地植被平均年NPP为82.04 gC.m-2,相当于同期全国陆地植被年NPP的23%,其中2001年的年NPP最小,只有78.04gC.m-2,2002年最大,为85.44 gC.m-2.根据年NPP分布显示,黄河源区的植被生长状况要好于长江源区,其中在黄河源东南部陆地植被的年NPP>250 gC.m-2,为江河源区植被年生长最大的区域;该地区的植被年NPP最小值的区域分布在长江源的西北部地区,年NPP大部分<50 gC.m-2.江河源地区植被的年NPP表现为显著的年际变化特征,不同地区年NPP的变化特征各不相同;高寒草甸的年NPP为该地区所有陆地植被年NPP中最大,其5 a平均值为89.38 gC.m-2,其次为高寒草原和灌木及草本植被;由于地处高寒地区,温度成为影响该地区陆地植被净初级生产力的主要因素. 相似文献
7.
塔里木河流域近40 a来气候、水文变化及其影响 总被引:40,自引:23,他引:40
塔里木河流域平原地区在近 10a明显变暖 ,较明显的增湿出现在近 2 0a,大部分平原地区近10a反而略有变干的迹象 ;2 0世纪 90年代是流域山区近 4 0a来最暖阶段 ,在天山南麓中西部山区和帕米尔高原一带 90年代增湿幅度大 ,西昆仑山北坡一带近 2 0a降水变化很小 .塔里木河流域 4条源流出山口多年平均径流量为 2 2 4 9× 10 8m3 ( 195 7— 1999年 ) ,年代际尺度上 ,5 0— 80年代基本接近多年平均值 ,而 90年代由于受山区增暖变湿影响 ,4条源流径流量达 2 4 1 9× 10 8m3 ,增幅 7 6 % .由于源流区人类活动的影响和粗放型农业 ,补给塔里木河源流条数减少 ,塔里木河干流上中游区间耗水量严重 ,中下游水量来水量在近 4 0a中持续减少 ,导致下游生态环境急剧恶化 相似文献
8.
新疆40a来气温、降水和沙尘天气变化 总被引:57,自引:10,他引:57
根据1961-2001年新疆代表北疆的8个气象站、天山山区的8个气象站、南疆的8个气象站的实测资料, 分析了40 a来新疆气温、降水、沙尘暴、扬沙、浮尘年代际变化特征.结果显示: 40 a来新疆气温呈明显上升趋势, 后10 a(1991-2000年)比前30 a平均气温升高, 北疆偏高0.8℃, 南疆和天山山区均偏高0.℃; 降水变化的总趋势是增湿明显, 后10 a与前30 a相比降水增加, 南疆偏多20.4%, 北疆偏多11.3%, 天山山区偏多9.8%; 南疆与北疆各类沙尘天气年际变化趋势基本相似, 80年代以来呈减少趋势; 南疆沙尘暴、扬沙、浮尘总日数之和与同期的温度、降水在春季有相对较好的线性相关关系. 相似文献
9.
近40年来青藏高原湖泊变迁及其对气候变化的响应 总被引:7,自引:0,他引:7
湖泊对气候波动有敏感记录。本文以GIS和RS技术为基础,在野外实地考察的基础上,从20世纪70年代、90年代、2000年前后和2010年前后4期Landsat遥感影像中提取了青藏高原所有湖泊边界信息,建立了青藏高原湖泊空间数据库。分析表明的青藏高原面积大于0.5 km2的湖泊总面积变化:(1)从20世纪70年代至90年代增加了13.42%; (2)从20世纪90年代至2000年前后增加了4.86%; (3)从2000年前后至2010年前后增加了13.04%。可见,近40年来,青藏高原湖泊个数和面积均呈增加的趋势。气象数据分析表明,青藏高原气候出现了由暖干向暖湿的转型,表现为气温升高、降雨量增加和蒸发量减小。笔者选取了研究区内面积大于10 km2的时间上合适做比较的所有湖泊,逐一分析了其在4个时期的动态变化情况,并根据变化结果进行了分区。不同时期的湖泊变迁具有区域差异性:(1)从20世纪70年代至90年代,西藏北部、中部、藏南、青海羌塘盆地和青海东部湖泊呈萎缩趋势; (2)20世纪90年代至2000年,青海北部湖泊萎缩; (3)2000年至2010年,除藏南外,青藏高原其余地区湖泊全面扩张。不同补给源的湖泊对气候变化的响应模式不同:(1)气温主要影响以冰雪融水及其径流为主要补给源的湖泊,如色林错、赤布张错等; (2)降雨量主要影响以大气降雨和地表径流为主要补给源的湖泊,如青海羌塘盆地; (3)蒸发量直接影响湖泊水量的散失,在青藏高原总体蒸发量减小的大环境下,部分地区因升温引起的湖泊蒸发效应超过了降水和径流量增加,湖泊出现萎缩的现象,如羊卓雍错流域。总之,地质构造控制了湖泊变迁的总格局,而短时间尺度的湖泊变迁主要受气候因素的影响。此外,湖泊动态变化还受冰川、人类活动、湖盆形状、补给和排泄区等因素的影响。 相似文献
10.
青藏高原河源区气候变化特征分析 总被引:11,自引:8,他引:11
利用1954-2007年青藏高原河源区(包括长江、黄河、澜沧江、怒江和雅鲁藏布江)30个气象站的年平均气温和降水量,通过计算气候倾向率和距平小波分析(墨西哥帽小波函数)等方法分析了近54 a来青藏高原河源区的气候变化特征.结果表明:青藏高原河源区年平均气温变化在7~-3℃之间,由东南向西北逐渐减少;并呈现逐年上升的趋势,自20世纪90年代以来升温更为强烈.年降水量的分布大致是由东南向西北逐步减少,在同一纬度上,东部的降水量多于西部,2001-2005年的多年平均降水量达到历史最大值.年平均气温和降水的周期振荡在高频区振荡频繁,有多个突变点,中低频区则较平缓.不同河源区的气温增温率具有显著的区域性差异,雅鲁藏布江源区最大(0.54℃.(10a)-1),黄河次之(0.31℃.(10a)-1),澜沧江和怒江最小(0.17℃.(10a)-1).除少数气象站外,区域内各站的年平均气温也普遍升高.澜沧江源区是整个青藏高原河源区降水量升幅最大的地区,而雅鲁藏布江源区为降水量升幅最小的区域.从整个青藏高原来看,温度和降水均普遍升高,整个区域呈现暖湿化趋势,但降水量的增加较微弱. 相似文献
11.
长江-黄河源寒区径流时空变化特征对比 总被引:32,自引:8,他引:32
长江源区比黄河源区寒冷而干燥, 年径流量仅为黄河源区的60%, 径流年内分配较黄河源区均匀性差, 丰水年与枯水年比例基本相当, 而黄河源区枯水年占较大优势. 近40 a来长江源区径流量总体上呈明显的递减趋势, 黄河源区径流量则呈现略微增长趋势. 长江源区径流量以8~9 a的周期变化较为显著, 黄河源区径流量则以7~8 a周期比较显著. 对寒区径流变化的主要影响因子分析表明, 长江源区温度因子对径流年际变化影响大于黄河源区, 而降水因子影响相对较小, 长江源区寒区水文环境对径流影响较大是造成长江、黄河源区径流差异形成的主要原因. 相似文献
12.
长江黄河源区积雪空间分布与年代际变化 总被引:1,自引:0,他引:1
应用长江黄河源区及其周边地区16个气象站逐日积雪资料,分析了长江黄河源区积雪的空间分布和年代际变化特征.结果表明:以巴颜喀拉山主峰为中心的黄河源头和长江源东南部地区是年积雪深度高值中心,黄河源头以西和五道梁以东的长江源东北部和黄河源西北部广大地区是低值中心.冬春累积积雪深度占年累积积雪深度的比例>71.0%,夏半年(6~9月)对其的贡献小,但夏半年的积雪日数占年积雪日数的1/3.曲麻莱达日一线以南地区积雪主要发生在1月份,以北地区一年有两个高值期:前冬10~11月和春季3~5月.长江源和黄河源头地区积雪建立早,积雪季节长,结束晚,消退过程缓慢;而黄河源东部地区,积雪建立稍晚,积雪发展比较缓慢,消退过程迅速.近40 a来长江黄河源区积雪呈确定的增长态势,长江源区冬春积雪增长了62.11%,黄河源区增长了60.18%.但二者积雪变化位相基本相反,变化幅度长江源大起大落,而黄河源比较平缓,多雪年份出现也不一致.整个源区20世纪60年代至70年代初为积雪偏少期,70年代中期至90年代是积雪偏多期.从20世纪70年代中至80年代末,积雪明显增加,90年代积雪增加速度有所放慢,近40 a江河源区平均冬春累积积雪深度增加了60.95%.长江源区对整个源区积雪变化起主导作用,源区平均冬春累积积雪深度变化主要表现长江源的特征. 相似文献
13.
14.
黄河、长江源区降水变化的水汽输送和环流特征 总被引:12,自引:8,他引:12
利用黄河、长江源区气象站的降水资料和NCEP/NCAR再分析气候资料,分析了黄河、长江源区降水的年际变化,对黄河、长江源区典型多雨年与少雨年的500 hPa位势高度和风场、600 hPa流场、大气水汽含量和水汽输送进行了合成和对比分析.结果表明:黄河和长江源区的降水在近50 a的长期变化趋势都不明显,但在最近10 a黄河源区的降水有明显的减少趋势.而长江源区的降水则有明显的增加趋势;江河源区在多雨与少雨年有明显的环流差异特征,在多/少雨年,500 hPa蒙古低压减弱/加强,西风风速减弱/增强,600 hPa高原辐合线偏北/南,江河源区大气水汽含量增加/减少,西南季风的偏南水汽输送增加/减少.使得江河源区有较多/少的水汽来源,从而降水增多/减少;黄河和长江源区有相似的多雨与少雨年环流差异特征,只是差异程度不同,长江源区多雨与少雨年环流特征差异的强度不及黄河源区. 相似文献
15.
16.
Climatic causes of ecological and environmental variations in the source regions of the Yangtze and Yellow Rivers of China 总被引:1,自引:0,他引:1
In the source regions of the Yangtze and Yellow Rivers of China, glaciers, frozen ground, the hydrological system, and alpine
vegetation have changed over the past decades years. Climatic causes of these variations have been analyzed using mean monthly
air temperature and monthly precipitation between 1956 and 2000, and monthly evaporation from φ20 evaporation pans between
1961 and 1996. In the source region of the Yangtze River, lower temperature and plentiful precipitation during the 1960s and
continuing into the early 1980s triggered a glacier advance that culminated in the early 1990s, while a robust temperature
increase and precipitation decrease since 1986 has forced glaciers to retreat rapidly since 1995. Permafrost degradation is
another consequence of the climatic warming. The variations in the hydrological system and alpine vegetation are controlled
mainly by the climate during the warm season. Warmer and drier summer climate is the major cause of a degradation of the vegetation,
desiccation of the high-cold marshland, a decrease in the areas and numbers of lakes and rivers in the middle and north source
regions of the Yangtze and Yellow Rivers, and a reduction in surface runoff in the source region of the Yangtze River for
the last 20 years. The causes of eco-environmental change in Dari area, near the outlet from the source area of the Yellow
River, are different from those elsewhere in the study area. A noticeable reduction in runoff in the source region of the
Yellow River and degradation of alpine vegetation in Dari area are closely related to the permafrost degradation resulting
from climate warming. 相似文献
17.
基于黄河河源区干流各水文站和有关气象站、雨量站的气温、降水与径流观测资料, 分析了该区域的气候变化特征与趋势及其水文响应. 结果表明: 在全球变暖的大背景下, 自20世纪80年代后期开始西北地区西部新疆、甘肃河西走廊西部等地降水量显著增加、气候明显由"暖干"转向"暖湿"后, 到21世纪初的年代中期后黄河源区降水量亦出现明显的增长, 气候明显转向暖湿. 最新的观测数据显示, 2005年以来河源区平均年降水量已连续多年超过多年均值进入一个多雨期, 河源区各断面来水量也于2008年后连续多年超过多年均值, 进入一个连续丰水段, 并于2012年达到了自1989年以后20余年来的最大值. 这种变化的前景如何, 目前尚不能确定, 尚需对未来河源区气候在时间与空间上变化的速度和程度进一步观察和分析. 根据对与该区域气候关系密切的东亚季风活动的研究成果以及对河源区气候与径流变化的观测事实及趋势推测, 未来黄河源区气候向暖湿的转化在时间尺度上年代际的可能性较大. 相似文献
18.
Spatial and temporal variations in alpine vegetation cover have been analyzed between 1982 and 2001 in the source regions of the Yangtze and Yellow Rivers on the Tibetan Plateau. The analysis was done using a calibrated-NDVI (Normalized Difference Vegetative Index) temporal series from NOAA-AVHRR images. The spatial and temporal resolutions of images are 8 km and 10 days, respectively. In general, there was no significant trend in alpine vegetation over this time period, although it continued to degrade severely in certain local areas around Zhaling and Eling Lakes, in areas north of these lakes, along the northern foot of Bayankala Mountain in the headwaters of the Yellow River, in small areas in the Geladandong region, in a few places between TuoTuohe and WuDaoliang, and in the QuMalai and Zhiduo belts in the headwaters of the Yangtze River. Degradation behaves as vegetation coverage reduced, soil was uncovered in local areas, and over-ground biomass decreased in grassland. The extent of degradation ranges from 0 to 20%. Areas of 3×3 pixels centered on Wudaoliang, TuoTuohe, QuMalai, MaDuo, and DaRi meteorological stations were selected for statistical analysis. The authors obtained simple correlations between air temperature, precipitation, ground temperature and NDVI in these areas and constructed multivariate statistical models, including and excluding the effect of ground temperature. The results show that vegetation cover is sensitive to variations in temperature, and especially in the ground temperature at depths of ∼40 cm. Permafrost is distributed widely in the study area. The resulting freezing and thawing are related to ground temperature change, and also affect the soil moisture content. Thus, degradation of permafrost directly influences alpine vegetation growth in the study area. 相似文献