首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two 2×10‐year climate change experiments made with the Rossby Centre regional Atmospheric climate model (RCA) are reported. These two experiments are driven by boundary data from two global climate change simulations, one made with HadCM2 and the other with ECHAM4/OPYC3, in which the global mean warming is virtually the same, 2.6°C. The changes in mean temperature and precipitation show similarities (including broadly the same increase in temperature and in northern Europe a general increase in annual precipitation) as well as differences between the two RCA experiments. These changes are strongly governed by the driving GCM simulations. Even on the RCA grid box scale, the differences in change between RCA and the driving GCM are generally smaller than the differences between the two GCMs. Typically about a half of the local differences between the two RCA simulations are attributed to noise generated by internal variability, which also seems to explain a substantial part of the RCA‐GCM differences particularly for precipitation change. RCA includes interactive model components for the Baltic Sea and inland lakes of northern Europe. The simulated changes in these water bodies are discussed with emphasis on the wintertime ice conditions. Comparison with an earlier RCA experiment indicates that a physically consistent treatment of these water bodies is also of importance for the simulated atmospheric climate change.  相似文献   

2.
The main characteristics of spatial and temporal variability of the precipitation regime in Sweden were studied by using the long‐term monthly precipitation amount (1890‐1990) at 33 stations. The data were filtered by using Empirical Orthogonal Function (EOF) analysis, which provides principal modes of both spatial variability and time coefficient series describing the dominant temporal variability. Canonical correlation analysis (CCA) was used to reveal association between the atmospheric circulation and the characteristics of the climate variability. Statistically significant upward shifts in the mean precipitation have been found during cold months (March, September, November and December) and only a downward shift (less significant) for August. Simultaneous changes in the time series associated to the optimally correlated circulation patterns were found, indicating an important role of the circulation. The circulation patterns are given by the North Atlantic Oscillation (NAO) in March and December and a cyclonic structure centred over southern Scandinavia in September and November. These changes may have induced changes in the mean precipitation seasonality reflected by a shift of the maximum precipitation from August to July (after 1931 for western part and after 1961 for the southeastern coast) and after 1961 to September, October or November for other regions. Combining rotated EOF analysis with cluster analysis, 4 regions with similar climate variability were objectively identified. For these regions the standardised monthly precipitation anomalies were computed. The frequency of the extreme events (very dry/wet and dry/wet months) over 5‐year consecutive intervals was analysed. It has been concluded that extreme wet months were more frequent than extreme dry months over the entire country, especially in the northern and southeastern part.  相似文献   

3.
The wind dependence of sea‐ice motion was studied on the basis of ice velocity and wind observations, and weather model output. The study area was a transition zone between open water and the ice‐covered ocean in the northern Baltic Sea. In the centre of the basin the sea‐ice motion was highly wind‐dependent and the linear relationship between the wind and the drift velocities explained 80% of the drift's variance. On the contrary, the wind‐drift dependence was low near the coast. The wind‐drift coherence was significant over a broader frequency range in the central part of the basin than for the coastal drift. The ice motion was simulated by a numerical model forced with five types of wind stress and with two types of current data, and the outcome was compared with the observed buoy drift. The wind and the wind‐induced surface current were the main factors driving the ice in the basin's centre, while internal ice stresses were of importance in the shear zone near the fast ice edge. The best wind forcing was achieved by applying a method dependent on atmospheric stability and ice conditions. The average air–ice drag coefficient was 1.4×10−3 with the standard deviation of 0.2×10−3. The improvement brought about by using an accurate wind stress was comparable with that achieved by raising the model grid resolution from 18 km to 5 km.  相似文献   

4.
Three recurring regional patterns of extratropical baroclinic development associated with synoptic‐scale collapses of Northern Hemisphere available potential energy (APE) are identified using a 1979–95 time series derived from the National Centers for Environmental Prediction (NCEP) reanalysis. A time series of the intraseasonal signal (from 1.6 to 180 days) of APE is used to discern an average cycle of approximately 3 days in the APE generation rate d A /d t (referred to as APE depletion rate if negative). An APE depletion event is defined as a fall and subsequent rise in the time series of d A /d t associated with this cycle. We define synoptic‐scale APE collapses as APE depletion events with maximum depletion rates (d A /d t min) and maximum APE falls (Δ A min) of less than −0.145× 106 J m−2 day−1 and −0.280×106 J m−2, respectively. All are cold season (15 October–15 April) events. APE collapses were classified based on the evolution of regional synoptic patterns during the 2 days centered at the time of d A /d t min . All are accompanied by deep tropospheric warming. The west Pacific warm surge (Type A) is driven by cyclogenesis over Japan and anticyclogenesis over the west‐central North Pacific. The Bering warm surge (Type B) is associated with an intense southerly flow across the Bering Strait brought on by cyclogenesis near the Kamchatka Peninsula and an intense anticyclone over Alaska. The Atlantic Canada warm surge (Type C) is characterized by an onshore flow of warm air ahead of a continental storm track over eastern North America.  相似文献   

5.
Making use of a simple two‐layer model, we analyze the impact of freshwater forcing on the thermohaline circulation. We consider the forward‐type circulation dominated by thermal forcing, implying that the freshwater forcing acts to reduce the density contrast associated with the equator‐to‐pole temperature contrast (prescribed in the model). The system is described by two variables: the depth of the upper layer ( H ) and the density contrast between the upper and lower layer (Δρ), which decreases with salinity contrast. The rate of poleward flow of light surface water and the diapycnal flow (i.e., upwelling) driven by widespread small‐scale mixing are both modeled in terms of H and Δρ. Steady states of thermohaline circulation are found when these two flows are equal. The representation of the diapycnal flow ( MD ) is instrumental for the dynamics of the system. We present equally plausible examples of a physically based representation of MD for which the thermohaline circulation either decreases or increases with density contrast. In the latter case, contrary to the traditional wisdom, the freshwater forcing amplifies the circulation and there exists a thermally dominated equilibrium for arbitrary intensity of freshwater forcing. Here, Stommel's famous feedback between circulation and salinity contrast is changed from a positive to a negative feedback. The interaction of such a freshwater boosted thermohaline circulation with the climate system is fundamentally different from what is commonly assumed, an issue which is briefly addressed.  相似文献   

6.
In this second part of the study, ideal shock theory in two‐layer stratified flow is extended to include a third passive layer (i.e., a two and a half layer system). With the presence of a passive layer, two linear wave modes and "viscous tail modes" exist, complicating the solubility conditions and uniqueness proofs for two layer shocks. It is found however, that shocks can be unambiguously classified as external or internal based on the states of criticality that they connect. The steepening condition, while still necessary, provides a less restrictive constraint than it did with a rigid lid. Thus, we have to rely more on solutions to the full viscous shock equations to establish shock existence. The detailed structure, momentum exchange, and Bernoulli loss in a viscous shock are examined using an analytical weak shock solution and a set of numerical solutions for shocks with finite amplitudes. A shock regime diagram ( F 1 by F 2) is constructed based on the numerical integration of the full viscous shock equations. For strong external jumps, a cusp region (i.e., in the sense of catastrophe theory) is identified on the regime diagram. For pre‐shock states within the cusp, three end states are possible and two of these are realizable. The cusp has several physical implications. It indicates that an equal distribution of dissipation between the two layers in shocks is mathematically possible but physically inaccessible. It also allows hysteresis in time varying flows, and promotes the occurrence of double shocks (i.e., closely spaced shocks of different character). The results are compared with classical shock solutions and a set of time dependent numerical experiments.  相似文献   

7.
A 2‐time‐level finite difference atmospheric general circulation model based on the semi‐Lagrangian advection of pseudo potential vorticity (which becomes potential vorticity in that part of the domain where the hybrid vertical coordinate becomes isentropic) has been formulated. At low levels, the hybrid vertical coordinate is terrain following. The problem of isentropic potential vorticity possibly becoming ill‐defined in the regions of planetary boundary layer is thus circumvented. The divergence equation is a companion to the (pseudo) potential vorticity equation and the model is thus called a PV‐D model. Many features of a previously developed shallow water PV‐D model are carried over: a modification of the PV equation needed to give computational stability of long Rossby waves; a semi‐Lagrangian semi‐implicit treatment of both the linear and the nonlinear terms; the use of an unstaggered grid in the horizontal; the use of a nonlinear multigrid technique to solve the nonlinear implicit equations. A linear numerical stability analysis of the model's gravity–inertia waves indicates that the potential temperature needs to be separated into horizontal mean and perturbation parts. This allows an implicit treatment of the vertical advection associated with the mean in the thermodynamic equation. Numerical experiments with developing baroclinic waves have been carried out and give realistic results.  相似文献   

8.
Abstract. A seasonal sampling program of five stations off the Island of Rhodes (SE Aegean Sea) was carried out in 1983–1984. Temperature, salinity, Secchi disk transparency, P-PO4, N-NO3, N-NO2, N-NH3, Si-SiO2, and chl a were measured and phytoplankton species recorded. Cell concentrations and chl a varied seasonally. with the highest values in summer (l.2 times 104 -1--1 total mean cells; 0.13 mgam-3 total mean chl a ) and the lowest in winter (2.3 times 103, 1--1 total mean cells; 0.06 mg.m-- total mean chl a ). A variation in cell abundance among stations was also noted. Quantitative relationships among the recorded taxa showed that diatoms and dinoflagellates were richer in species composition (88 and 58 total species, respectively) than coccolithophores (8 species) and other flagellates (8 species). Comparison of phytoplankton samples from different depths and stations by cluster analysis showed an irregularity or discontinuity in species associations. The SE Aegean Sea was characterized as oligotrophic on the basis of the estimated nutrient and phytoplankton concentration levels.  相似文献   

9.
The rôle of thermodynamics in the oceanic general circulation is investigated. The ocean is regarded as an open dissipative system that exchanges heat and salt with the surrounding system. A new quantitative method is presented to express the rate of entropy increase for a large‐scale open system and its surroundings by the transports of heat and matter. This method is based on Clausius's definition of thermodynamic entropy, and is independent of explicit expressions of small‐scale dissipation processes. This method is applied to an oceanic general circulation model, and the entropy increase rate is calculated during the spin‐up period of the model. It is found that, in a steady‐state, the entropy increase rate of the ocean system is zero, whereas that of the surroundings shows positive values, for both heat and salt transports. The zero entropy increase rate of the ocean system represents the fact that the system is in a steady‐state, while the positive entropy increase rate in the surroundings is caused by irreversible transports of heat and salt through the steady‐state circulation. The calculated entropy increase rate in the surroundings is 1.9×1011 W K−1, and is primarily due to the heat transport. It is suggested that the existence of a steady‐state dissipative system on the Earth, from a living system to the oceanic circulation, has a certain contribution to the entropy increase in its nonequilibrium surroundings.  相似文献   

10.
The present case study evaluates the downward longwave radiation at the surface (DLR) in several high‐resolution (≈1°) general circulation models (GCMs) using surface observations from a semiarid continental site in New South Wales, Australia (Uardry, 34.39°S, 142.30°E). This site is located on a large grassland plain uniform in both its land use and landcover type, and is therefore particularly well suited for a comparison with GCM grid mean values. Monthly averages of newly constructed clear‐sky and all‐sky DLR climatologies and the resulting cloud‐radiative forcing are compared. It is shown that the GCMs exceed the observed DLR under cloud‐free conditions by 10–20 W m−2 at this semiarid site on an annual basis, with a strong seasonal dependence. The calculated clear‐sky fluxes are overestimated during the warmer summer season, with large absolute values of DLR, while the biases are reduced in the colder and dryer winter season with smaller fluxes. This gives direct support for recent evidence that the DLR model biases depend systematically on the thermal and humidity structure of the cloudless atmosphere. Fluxes from strongly emitting atmospheres tend to be overestimated, but may be underestimated from atmospheres with smaller emission. This points to common problems inherent in the simulation of the emission from the cloudless atmosphere in current longwave radiation codes.
The comparisons of the all‐sky climatologies at Uardry show that the clear‐sky biases are partly masked in the models with an insufficient cloud‐radiative forcing, thereby counterbalancing the excessive DLR of the cloud‐free atmosphere. On the other hand, when the cloudradiative forcing is improved, the biases in the cloud‐free atmosphere become fully apparent in the all‐sky fluxes.  相似文献   

11.
Sub‐gridscale processes take place throughout the global atmosphere. Yet they have been neglected in traditional estimates of the global energy cycle on the ground that they can be treated as molecular heat fluxes. This view may cause quantitative underestimates of the efficiency of the global circulation of the atmosphere. In Part I of this two-part study we revisit the classical theory, beginning with the local energy equations. Similar to Lorenz we introduce a barotropic reference pressure p r and define a generalized field equation for the integrand of available potential energy, without reference to hydrostasy. The emerging energy quantity is new in that it comprises not only the classical correlation between efficiency factor and enthalpy but also an additional potential that depends upon p r . We then perform mass-averaging over the scale of contemporaneous global models (40‐400 km) and come up with averaged field energy equations, valid at the gridscale. Additional global and time-averaging of these removes all divergences and tendencies and yields two equations for the global energy reservoirs. The available potential energy reservoir is fed by gridscale plus sub-gridscale generation. The kinetic energy reservoir is tapped by gridscale plus sub-gridscale dissipation. Exchange between the reservoirs is carried by both gridscale and sub-gridscale conversion terms ( C grid, C sub ). Generation, conversion and dissipation fluxes are complete, as compared to the approximate quantities in the traditional formulation of the energy cycle. This approach allows to fully exploit Lorenz's original concept. The gridscale equations derived will be the basis for evaluating numerically the classical Lorenz terms plus a couple of new global conversion fluxes, notably C sub, to be presented in Part II of this study.  相似文献   

12.
A numerical 1‐dimensional fine grid sea ice thermodynamic model is constructed accounting specially for: (1) slush formation via flooding and percolation of rain‐ and snow meltwater, (2) the consequent snow ice formation via slush freezing, and (3) the effects of snow compaction on heat diffusion in snow cover. The model simulations from ice winter period 1979–90 are viewed against corresponding observations at the Kemi fast ice station (65 °39.8' N, 24° 31.4' E). The 11‐year averaged model results show good overall consistency with corresponding total ice thickness observations. The model slightly overestimates the snow ice thickness and underestimates the snow thickness in February and March, which is mainly addressed to the model assumption of isostatic balance (i.e., slush formation via flooding), which was probably not fully satisfied at the coastal Kemi fast ice station. Supposing that this assumption is nevertheless generally valid away from the very coastal fast ice zone, an estimate for sea ice sensitivity to changes in winter precipitation rate is produced. Increased precipitation leads to an increase only in snow ice thickness with little change in total ice thickness, while a reduction in precipitation of more than {213}50% causes a significant increase in total ice thickness. The difference in modeled total ice thickness for the case of artificially neglecting snow ice physics is about 25%, which indicates the importance of including snow ice physics in a sea ice model dealing with the seasonal sea ice zone.  相似文献   

13.
The feasibility of assimilating the GPS total zenith delay into atmospheric models is investigated within the framework of the "Observing System Simulation Experiment." The total zenith delay is made up of two terms: one is proportional to the pressure at the site of the GPS ground‐based receiver and the other to the overlying amount of water vapor. Using the MM5 mesoscale model and its adjoint, a set of 4‐dimensional variational (4DVAR) experiments is performed. Results from the assimilation of simulated precipitable water observations are used as the benchmark. The model domain covers Southern California. The observations are simulated with a 10 km horizontal resolution model that includes full physics, while a 20‐km resolution and a less comprehensive physics package are used in the 4DVAR experiments. Both, the 10‐km and 20‐km models employ the same set of 15 vertical levels. Moisture fields retrieved from the total zenith delay are found to compare very well with those retrieved from the precipitable water. Verified against the observations, the vertically integrated moisture is found to be very accurate. An overall improvement is also achieved in the vertical profiles of the moisture fields. The use of the so‐called background term and model initialization are shown to greatly reduce the negative impact that the sole assimilation of the total zenith delay can have on the pressure field and integrated water vapor. The adverse effect stems from the poor resolution of the topography needed to evaluate the model pressure at the GPS sites. The analysis increments of all model fields are found to be similar to the counterparts obtained from the assimilation of the precipitable water. The same is true for the short‐range precipitation forecasts initiated from the 4DVAR‐optimal initial conditions.  相似文献   

14.
15.
Enric  Ballesteros 《Marine Ecology》1994,15(3-4):233-253
Abstract. Peyssonnelia bed distribution on continental shelf bottoms of the Balearic Islands (Western Mediterranean) ranges from 40 to 90 m depth. Different species of Peyssonnelia dominate these bottoms and, according to multivariate techniques, two main assemblages have been distinguished: the Peyssonnelia rosa-marina beds and the Peyssonnelia sp. beds, together with some transition samples between Peyssonnelia and maërl beds. Erect red algae are always abundant. Although average yearly irradiance reaching these beds is only 6.4-0.3% of subsurface irradiance, the species richness averages 45 species per sample (1600 cm2) and mean biomass is 2835 g dw. m-2. The high carbonate content of the living algae of these bottoms suggests that they are important contributors to the production of sediments in the Balearic continental shelf.  相似文献   

16.
In this paper, we present a numerical procedure for solving a 2‐dimensional, compressible, and nonhydrostatic system of equations. A forward‐backward integration scheme is applied to treat high‐frequency and internal gravity waves explicitly. The numerical procedure is shown to be neutral in time as long as a Courant–Friedrichs–Lewy criterion is met. Compared to the leap‐frog‐scheme most models use, this method involves only two time steps, which requires less memory and is also free from unstable computational modes. Hence, a time‐filter is not needed. Advection and diffusion terms are calculated with a time step longer than sound‐wave related terms, so that extensive computer time can be saved. In addition, a new numerical procedure for the free‐slip bottom boundary condition is developed to avoid using inaccurate one‐sided finite difference of pressure in the surface horizontal momentum equation when the terrain effect is considered. We have demonstrated the accuracy and stability of this new model in both linear and nonlinear situations. In linear mountain wave simulations, the model results match the corresponding analytical solution very closely for all three cases presented in this paper. The analytical streamlines for uniform flow over a narrow mountain range were obtained through numerical integration of Queney's mathematical solution. It was found Queney's original diagram is not very accurate. The diagram had to be redrawn before it was used to verify our model results. For nonlinear tests, we simulated the famous 1972 Boulder windstorm and a bubble convection in an isentropic enviroment. Although there are no analytical solutions for the two nonlinear tests, the model results are shown to be very robust in terms of spatial resolution, lateral boundary conditions, and the use of the time-split scheme.  相似文献   

17.
Abstract. Results from sediment trap experiments in Bogue Sound, North Carolina, indicate that meiofauna from a wide variety of taxa and benthic habitats are regularly suspended in the subtidal water column. Interstitial species are estimated to account for 10–30 % of the suspended meiofauna. Measurements of suspended nematode concentrations, when compared with wind and current velocity records, suggest that in Bogue Sound, shoaling and breaking waves are more important than tidal currents in controlling meiofauna erosion and deposition. Linear regression analysis indicates that 80% (r = 0.907) of the variation in suspended nematode density is correlated with changes in the mean onshore-offshore component of local wind velocity. Nematode turnover associated with spring and summer coastal wind patterns is estimated to be several hundred animals per m2per day. Once suspended, meiofauna may be carried up to 10 km per day by residual currents in the Sound. Although erosion, transport and deposition of benthic nematodes by wave and current action appears to provide an effective means of dispersal along continental coastlines, the high settling velocity of nematodes suspended in Bogue Sound (on the order of 10-4m s-1) suggests that net downward flux in shelf and slope waters probably prevents their dispersal across ocean basins by surface currents.  相似文献   

18.
Sevim Polat 《Marine Ecology》2002,23(2):115-126
Abstract. The monthly changes in chlorophyll a , phytoplankton abundance and nutrient concentrations at two stations, one at the inshore and the other at the deep waters of the northern part of İskenderun Bay, were investigated between 1994 – 1995. The vertical distribution of nutrients and phytoplankton biomass were also studied at the deep station. The concentrations of NO3+NO2-N, PO4-P and SiO4-Si of surface water at both stations were 0.31 – 1.63 µg-at · l-1, 0.08 – 0.60 µg-at · l-1 and 0.50 – 2.7 µg-at · l-1, respectively. The highest concentrations were measured at the inshore station and clear differences were found between the inshore and deep-water stations. Chlorophyll a concentrations ranged from 0.17 to 2.78 µg · l-1 and the highest value was measured in March. At the inshore station, which was affected by land run-off, phytoplankton abundance reached the highest value (21,308 cells · l-1) in October 1995, with a marked dominance of Pseudonitzschia pungens (20,200 cells · l-1). The nutrient and chlorophyll a concentrations at the inshore station were higher than those at the deep station. One reason for this is the land-based nutrient input into the coastal area here. In spite of these effects, the bay is not eutrophicated because of circulation events in the northeastern Mediterranean.  相似文献   

19.
In this part ot the paper theoretical wind-wave spectra nave been derived oy (I) expressing the spectrum in series composed of exponential terms; (2) assuming that the spectrum satisfies a high order linear ordinary differential equation; (3) introducing proper parameters in the spectrum; and (4) making use of some known charateristics of wind-wave spectrum, for instance, the law governing the equilibrium range. The spectrum obtained contains the zero order moment of the spectrum m0, the peak frequency ω0 and the ratio R =ω/ω0 (ω being the mean zero-crossing frequency) as parameters. The shape of the nondimensional spectrum S(ω) = ω0S(ω)/m0(ω=ω/ω0) changes with R and theoretically reduces to a Dirac delta function δ(ω-1) when R = 1. A spectrum of simplified form is given for practical uses, in which R is replaced by a peakness factor P=S(1).  相似文献   

20.
南黄海透明度的时空分异特征及影响因素分析   总被引:1,自引:0,他引:1  
水体透明度(Zsd)是评价水质状况的重要光学参数.本文针对南黄海海域,面向MODIS传感器校正了Zsd遥感反演模型,进而利用MODIS近20年(2002-2020年)数据分析了南黄海Zsd的时空变化特征及其驱动力,结果显示:建立的Zsd反演模型具有良好的精度(决定系数为0.91,均方根误差为1.69 m,平均相对误差绝...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号