首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Tertiary volcanic rocks from the Westerwald region range frombasanites and alkali basalts to trachytes, whereas lavas fromthe margin of the Vogelsberg volcanic field consist of morealkaline basanites and alkali basalts. Heavy rare earth elementfractionation indicates that the primitive Westerwald magmasprobably represent melts of garnet peridotite. The Vogelsbergmelts formed in the spinel–garnet peridotite transitionregion with residual amphibole for some magmas suggesting meltingof relatively cold mantle. Assimilation of lower-crustal rocksand fractional crystallization altered the composition of lavasfrom the Westerwald and Vogelsberg region significantly. Thecontaminating lower crust beneath the Rhenish Massif has a differentisotopic composition from the lower continental crust beneaththe Hessian Depression and Vogelsberg, implying a compositionalboundary between the two crustal domains. The mantle sourceof the lavas from the Rhenish Massif has higher 206Pb/204Pband 87Sr/86Sr than the mantle source beneath the Vogelsbergand Hessian Depression. The 30–20 Ma volcanism of theWesterwald apparently had the same mantle source as the QuaternaryEifel lavas, suggesting that the magmas probably formed in apulsing mantle plume with a maximum excess temperature of 100°Cbeneath the Rhenish Massif. The relatively shallow melting ofamphibole-bearing peridotite beneath the Vogelsberg and HessianDepression may indicate an origin from a metasomatized portionof the thermal boundary layer. KEY WORDS: continental rift volcanism; basanites; trachytes; assimilation; fractional crystallization; partial melting  相似文献   

2.
A geochemical and petrological study of Miocene to recent alkalibasalts, basanites, hawaiites, mugearites, trachytes, and phonoliteserupted within the Harrat Ash Shamah volcanic field was performedto reconstruct the magmatic evolution of southern Syria. Themajor element composition of the investigated lavas is mainlycontrolled by fractional crystallization of olivine, clinopyroxene,± Fe–Ti oxides and ± apatite; feldspar fractionationis restricted to the most evolved lavas. Na2O and SiO2 variationswithin uncontaminated, primitive lavas as well as variably fractionatedheavy rare earth element ratios suggest a formation by variabledegrees of partial melting of different garnet peridotite sourcestriggered, probably, by changes in mantle temperature. The isotopicrange as well as the variable trace element enrichment observedin the lavas imply derivation from both a volatile- and incompatibleelement-enriched asthenosphere and from a plume component. Inaddition, some lavas have been affected by crustal contamination.This effect is most prominent in evolved lavas older than 3·5Ma, which assimilated 30–40% of crustal material. In general,the periodicity of volcanism in conjunction with temporal changesin lava composition and melting regime suggest that the Syrianvolcanism was triggered by a pulsing mantle plume located underneathnorthwestern Arabia. KEY WORDS: 40Ar/39Ar ages; intraplate volcanism; mantle plume; partial melting; Syria  相似文献   

3.
Vico volcano has erupted potassic and ultrapotassic magmas,ranging from silica-saturated to silica-undersaturated types,in three distinct volcanic periods over the past 0·5Myr. During Period I magma compositions changed from latiteto trachyte and rhyolite, with minor phono-tephrite; duringPeriods II and III the erupted magmas were primarly phono-tephriteto tephri-phonolite and phonolite; however, magmatic episodesinvolving leucite-free eruptives with latitic, trachytic andolivine latitic compositions also occurred. In Period II, leucite-bearingmagmas (87Sr/86Srinitial = 0·71037–0·71115)were derived from a primitive tephrite parental magma. Modellingof phonolites with different modal plagioclase and Sr contentsindicates that low-Sr phonolitic lavas differentiated from tephri-phonoliteby fractional crystallization of 7% olivine + 27% clinopyroxene+ 54% plagioclase + 10% Fe–Ti oxides + 4% apatite at lowpressure, whereas high-Sr phonolitic lavas were generated byfractional crystallization at higher pressure. More differentiatedphonolites were generated from the parental magma of the high-Srphonolitic tephra by fractional crystallization of 10–29%clinopyroxene + 12–15% plagioclase + 44–67% sanidine+ 2–4% phlogopite + 1–3% apatite + 7–10% Fe–Tioxides. In contrast, leucite-bearing rocks of Period III (87Sr/86Srinitial= 0·70812–0·70948) were derived from a potassictrachybasalt by assimilation–fractional crystallizationwith 20–40% of solid removed and r = 0·4–0·5(where r is assimilation rate/crystallization rate) at differentpressures. Silica-saturated magmas of Period II (87Sr/86Srinitial= 0·71044–0·71052) appear to have been generatedfrom an olivine latite similar to some of the youngest eruptedproducts. A primitive tephrite, a potassic trachybasalt andan olivine latite are inferred to be the parental magmas atVico. These magmas were generated by partial melting of a veinedlithospheric mantle sources with different vein–peridotite/wall-rockproportions, amount of residual apatite and distinct isolationtimes for the veins. KEY WORDS: isotope and trace element geochemistry; polybaric differentiation; veined mantle; potassic and ultrapotassic rocks; Vico volcano; central Italy  相似文献   

4.
Two coexisting series of strongly alkaline (basanite-tephritephonolite)and weakly alkaline (alkali basalt-trachyandesite-trachyte-rhyolite)lavas occur in the Cantal volcano (French Massif Central). Theparental magmas appear to be derived by variable degrees ofpartial melting of a common asthenospheric mantle source. Derivativetrachyandesites and feldspathoidbearing tephrites show depletionsand enrichments in trace elements which indicate that they havebeen generated by broadly similar fractionation processes, relatedto the removal of a mineral extract, from the parental alkalibasalts and basanites respectively, dominated by olivine, clinopyroxene,amphibole, apatite and titaniferous magnetite±plagioclase.In the most extreme differentiates (trachytes, rhyolites andphonolites) fractionation of zircon, sphene and alkali feldsparexerts a major control on the trace element characteristicsof the magmas. Sr-Nd-Pb isotopic data for the two magma series suggest theimportance of combined assimilation-fractional crystallizationprocesses (AFC) within the lower crust in their evolution. Modellingdemonstrates that the AFC process amplifies the original compositionaldifferences between the parent magmas. After 55% crystallizationin the strongly alkaline series and 65% in the weakly alkalineseries crustal contamination ceases, although fractional crystallizationcontinues beyond this point to produce the most evolved differentiates(phonolites and rhyolites). This may reflect progressive sealingof the lowercrustal magma reservoirs. The tendency of the magmasto follow over- or under-saturated evolutionary trends, producingrhyolitic and phonolitic residua respectively, appears to beestablished at the early stages of magmatic differentiation,reflecting inherent differences in the compositions of the parentalmagmas. KEY WORDS: alkaline magmas; Massif Central; Cantal; AFC; magmatic differentiation  相似文献   

5.
The aim of this study is to quantify the crustal differentiation processes and sources responsible for the origin of basaltic to dacitic volcanic rocks present on Cordón El Guadal in the Tatara-San Pedro Complex (TSPC). This suite is important for understanding the origin of evolved magmas in the southern Andes because it exhibits the widest compositional range of any unconformity-bound sequence of lavas in the TSPC. Major element, trace element, and Sr-isotopic data for the Guadal volcanic rocks provide evidence for complex crustal magmatic histories involving up to six differentiation mechanisms. The petrogenetic processes for andesitic and dacitic lavas containing undercooled inclusions of basaltic andesitic and andesitic magma include: (1) assimilation of garnet-bearing, possibly mafic lower continental crust by primary mantle-derived basaltic magmas; (2) fractionation of olivine + clinopyroxene + Ca-rich plagioclase + Fe-oxides in present non-modal proportions from basaltic magmas at ∼4–8 kbar to produce high-Al basalt and basaltic andesitic magmas; (3) vapor-undersaturated (i.e., P H2O<P TOTAL) partial melting of gabbroic crustal rocks at ∼3–7 kbar to produce dacitic magmas; (4) crystallization of plagioclase-rich phenocryst assemblages from dacitic magmas in shallow reservoirs; (5) intrusion of basaltic andesitic magmas into shallow reservoirs containing crystal-rich dacitic magmas and subsequent mixing to produce hybrid basaltic andesitic and andesitic magmas; and (6)␣formation and disaggregation of undercooled basaltic andesitic and andesitic inclusions during eruption from shallow chambers to form commingled, mafic inclusion-bearing andesitic and dacitic lavas flows. Collectively, the geochemical and petrographic features of the Guadal volcanic rocks are interpreted to reflect the development of shallow silicic reservoirs within a region characterized by high crustal temperatures due to focused basaltic activity and high magma supply rates. On the periphery of the silicic system where magma supply rates and crustal temperatures were lower, cooling and crystallization were more important than bulk crustal melting or assimilation. Received: 2 July 1997 / Accepted: 25 November 1997  相似文献   

6.
Experimental melting studies were conducted on a nepheline mugearitecomposition to pressures of 31 kbar in the presence of 0–30%added water. A temperature maximum in the near-liquidus stabilityof amphibole (with olivine) was found for a water content of3·5 wt % at a pressure of 14 kbar. This is interpretedto have petrogenetic significance for the derivation of nephelinemugearite magmas from nepheline hawaiite by amphibole-dominatedfractional crystallization at depth within the lithosphericmantle. Synthetic liquids at progressively lower temperaturesrange to nepheline benmoreite compositions very similar to thoseof natural xenolith-bearing high-pressure lavas elsewhere, andsupport the hypothesis that continued fractional crystallizationcould lead to high-pressure phonolite liquids. Independent experimentaldata for a basanite composition modeled on a lava from the sameigneous province (the Newer Basalts of Victoria) permit theinference that primary asthenospheric basanite magmas undergopolybaric fractional crystallization during ascent, and mayevolve to liquids ranging from nepheline hawaiite to phonoliteupon encountering cooler lithospheric mantle at depths of 42–50km. Such a model is consistent with the presence in some evolvedalkalic lavas of both lithospheric peridotite xenoliths indicativeof similar depths and of megacryst suites that probably representdisrupted pegmatitic segregations precipitated from precursoralkalic magmas in conduit systems within lithospheric mantle. KEY WORDS: experiment; high pressure; alkalic magmas; amphibole; nepheline mugearite; basanite; lithosphere  相似文献   

7.
碧口群火山岩岩石成因研究   总被引:13,自引:1,他引:12  
新元古代(846~776Ma)碧口群火山岩喷发于大陆板内裂谷环境。该火山岩系以基性火山岩为主,酸性火山岩次之,中性火山岩少见。根据岩石地球化学数据,碧口群裂谷基性熔岩总体上属于低Ti/Y(<500)岩浆类型。元素和同位素数据表明,碧口群基性熔岩的化学变化不是由一个共同的母岩浆的结晶分异作用所产生。它们极有可能是源于地幔柱源(εNd(t)≈+3,87Sr/86Sr(t)≈0.704,La/Nb≈0.7)。地壳混染作用对于碧口群裂谷基性熔岩的形成有重要贡献。我们的研究揭示,碧口群火山岩存在空间上的岩石地球化学变化。东部红岩沟和辛田坝—黑木林地区的碧口群基性熔岩以拉斑玄武岩为主,产生于幔源石榴子石稳定区的高度部分熔融。相反,西部白杨—碧口地区的碧口群基性熔岩的母岩浆则是形成于幔源的尖晶石-石榴子石过渡带:碱性熔岩是产生于部分熔融程度较低的条件下,拉斑玄武质熔岩则是产生于部分熔融条件较高的条件下。它们经受了浅层位辉长岩质(cpx+plag±ol)分离作用,化学变异较大。  相似文献   

8.
Partial Crystallization of Mid-Ocean Ridge Basalts in the Crust and Mantle   总被引:2,自引:2,他引:2  
HERZBERG  CLAUDE 《Journal of Petrology》2004,45(12):2389-2405
Pressures at which partial crystallization occurs for mid-oceanridge basalts (MORB) have been examined by a new petrologicalmethod that is based on a parameterization of experimental datain the form of projections. Application to a global MORB glassdatabase shows that partial crystallization of olivine + plagioclase+ augite ranges from 1 atm to 1·0 GPa, in good agreementwith previous determinations, and that there are regional variationsthat generally correlate with spreading rate. MORB from fast-spreadingcenters display partial crystallization in the crust at ridgesegment centers and in both mantle and crust at ridge terminations.Fracture zones are likely to be regions where magma chambersare absent and where there is enhanced conductive cooling ofthe lithosphere at depth. MORB from slow-spreading centers displayprominent partial crystallization in the mantle, consistentwith models of enhanced conductive cooling of the lithosphereand the greater abundance of fracture zones through which theypass. In general, magmas that move through cold mantle experiencesome partial crystallization, whereas magmas that pass throughhot mantle may be comparatively unaffected. Estimated pressuresof partial crystallization indicate that the top of the partialmelting region is deeper than about 20–35 km below slow-spreadingcenters and some ridge segment terminations at fast-spreadingcenters. KEY WORDS: MORB; olivine gabbro; partial crystallization; partial melting; ridge segmentation; fracture zones; crust; mantle; lithosphere  相似文献   

9.
The mid-Holocene eruptive products of Nevado de Longavívolcano (36·2°S, Chile) are the only reported occurrenceof adakitic volcanic rocks in the Quaternary Andean SouthernVolcanic Zone (33–46°S). Dacites of this volcano arechemically distinct from other evolved magmas of the regionin that they have high La/Yb (15–20) and Sr/Y (60–90)ratios and systematically lower incompatible element contents.An origin by partial melting of high-pressure crustal sourcesseems unlikely from isotopic and trace element considerations.Mafic enclaves quenched into one of the dacites, on the otherhand, constitute plausible parental magmas. Dacites and maficenclaves share several characteristics such as mineral chemistry,whole-rock isotope and trace element ratios, highly oxidizingconditions (NNO + 1·5 to >NNO + 2, where NNO is thenickel–nickel oxide buffer), and elevated boron contents.A two-stage mass-balance crystal fractionation model that matchesboth major and trace elements is proposed to explain magmaticevolution from the least evolved mafic enclave to the dacites.Amphibole is the main ferromagnesian phase in both stages ofthis model, in agreement with the mineralogy of the magmas.We also describe cumulate-textured xenoliths that correspondvery closely to the solid assemblages predicted by the model.We conclude that Nevado de Longaví adakitic dacites arethe products of polybaric fractional crystallization from exceptionallywater-rich parent magmas. These basaltic magmas are inferredto be related to an exceptionally high, but transient inputof slab-derived fluids released from serpentinite bodies hostedin the oceanic Mocha Fracture Zone, which projects beneath Nevadode Longaví. Fractional crystallization that is modallydominated by amphibole, with very minor garnet extraction, isa mechanism for generating adakitic magmas in cold subductionzones where a high flux of slab-derived fluids is present. KEY WORDS: adakite; amphibole; Andes; differentiation; Southern Volcanic Zone  相似文献   

10.
The 1995 eruption of Fogo (Cape Verde Islands) differed from previous eruptions by the occurrence of evolved lavas, the SW-orientation of vents, and pre-eruptive seismicity between Fogo and the adjacent (~20 km) island of Brava. We have conducted a thermobarometric and chemical study of this eruption in order to reconstruct its magma plumbing system and to test for possible connections to Brava. The bimodal eruption produced basanites (5.2–6.7 wt% MgO) and phonotephrites (2.4–2.8 wt% MgO) that are related by fractional crystallization. Clinopyroxene-melt-barometry of phenocrysts yields pressure ranges of 460–680 MPa for the basanites and 460–520 MPa for the phonotephrites. Microthermometry of CO2-dominated fluid inclusions in olivine and clinopyroxene phenocrysts yields systematically lower pressure ranges of 200–310 MPa for basanites and 270–470 MPa for phonotephrites. The combined data indicate pre-eruptive storage of the 1995 magmas within the lithospheric mantle between 16 and 24 km depth. During eruption, the ascending magmas stalled temporarily at 8–11 km depth, within the lower crust, before they ascended to the surface in a few hours as indicated by zonations of olivine phenocrysts. Our data provide no evidence for magma storage at shallow levels (<200 MPa) or lateral magma movements beneath the Fogo-Brava platform. Sr–Nd–Pb isotope ratios of samples from Brava differ significantly from those of the 1995 and older Fogo lavas, which rules out contamination of the 1995 magmas by Brava material and indicates different mantle sources and magma plumbing systems for both islands.  相似文献   

11.
The Baikal Rift is a zone of active lithospheric extension adjacentto the Siberian Craton. The 6–16 Myr old Vitim VolcanicField (VVF) lies approximately 200 km east of the rift axisand consists of 5000 km3 of melanephelinites, basanites, alkaliand tholeiitic basalts, and minor nephelinites. In the volcanicpile, 142 drill core samples were used to study temporal andspatial variations. Variations in major element abundances (e.g.MgO = 3·3–14·6 wt %) reflect polybaric fractionalcrystallization of olivine, clinopyroxene and plagioclase. 87Sr/86Sri(0·7039–0·7049), 143Nd/144Ndi (0·5127–0·5129)and 176Hf/177Hfi (0·2829–0·2830) ratiosare similar to those for ocean island basalts and suggest thatthe magmas have not assimilated significant amounts of continentalcrust. Variable degrees of partial melting appear to be responsiblefor differences in Na2O, P2O5, K2O and incompatible trace elementabundances in the most primitive (high-MgO) magmas. Fractionatedheavy rare earth element (HREE) ratios (e.g. [Gd/Lu]n > 2·5)indicate that the parental magmas of the Vitim lavas were predominantlygenerated within the garnet stability field. Forward major elementand REE inversion models suggest that the tholeiitic and alkalibasalts were generated by decompression melting of a fertileperidotite source within the convecting mantle beneath Vitim.Ba/Sr ratios and negative K anomalies in normalized multi-elementplots suggest that phlogopite was a residual mantle phase duringthe genesis of the nephelinites and basanites. Relatively highlight REE (LREE) abundances in the silica-undersaturated meltsrequire a metasomatically enriched lithospheric mantle source.Results of forward major element modelling suggest that meltingof phlogopite-bearing pyroxenite veins could explain the majorelement composition of these melts. In support of this, pyroxenitexenoliths have been found in the VVF. High Cenozoic mantle potentialtemperatures (1450°C) predicted from geochemical modellingsuggest the presence of a mantle plume beneath the Baikal RiftZone. KEY WORDS: Baikal Rift; mafic magmatism; mantle plume; metasomatism; partial melting  相似文献   

12.
The Miocene–Quaternary Jemez Mountains volcanic field(JMVF), the site of the Valles caldera, lies at the intersectionof the Jemez lineament, a Proterozoic suture, and the CenozoicRio Grande rift. Parental magmas are of two types: K-depletedsilica-undersaturated, derived from the partial melting of lithosphericmantle with residual amphibole, and tholeiitic, derived fromeither asthenospheric or lithospheric mantle. Variability insilica-undersaturated basalts reflects contributions of meltsderived from lherzolitic and pyroxenitic mantle, representingheterogeneous lithosphere associated with the suture. The Kdepletion is inherited by fractionated, crustally contaminatedderivatives (hawaiites and mugearites), leading to distinctiveincompatible trace element signatures, with Th/(Nb,Ta) and La/(Nb,Ta)greater than, but K/(Nb,Ta) similar to, Bulk Silicate Earth.These compositions dominate the mafic and intermediate lavas,and the JMVF is therefore derived largely, and perhaps entirely,from melting of fertile continental Jemez lineament lithosphereduring rift-related extension. Significant variations in Pband Nd isotope ratios (206Pb/204Pb = 17·20–18·93;143Nd/144Nd = 0·51244–0·51272) result fromcrustal contamination, whereas 87Sr/86Sr is low and relativelyuniform (0·7040–0·7048). We compare theeffects of contamination by low-87Sr/86Sr crust with assimilationof high-87Sr/86Sr granitoid by partial melting, with Sr retainedin a feldspathic residue. Both models satisfactorily reproducethe isotopic features of the rocks, but the lack of a measurableEu anomaly in most JMVF mafic lavas is difficult to reconcilewith a major role for residual plagioclase during petrogenesis. KEY WORDS: Jemez Mountains volcanic field; Rio Grande rift; lithospheric mantle; crustal contamination; trace elements; radiogenic isotopes  相似文献   

13.
The major and trace element chemistry of phonolites containing spinel Iherzolite xenoliths from Bokkos (Nigeria), Phonolite Hill (northeastern Australia) and Heldburg (East Germany) is consistent with an origin by fractional crystallization of basanitic magmas at upper mantle pressures (10–15 kbar). At Bokkos, spatially associated lavas ranging from hawaiitic nepheline mugearite to nepheline benmoreite can be modeled very well by fractional crystallization of kaersutitic amphibole + olivine + Fe-Ti-spinel + apatite, a crystal extract consistent with experimentally-determined near-liquidus phase relationships for mugearitic liquids. Further fractional crystallization of aluminous clinopyroxene + mica + apatite will yield the phonolites. A similar model relating the unusual Iherzolite-bearing mafic nepheline benmoreite from Pigroot (New Zealand) to basanitic lavas of the East Otago province is not supported by major and trace element data. The Pigroot lava is possibly the product of melting of a mantle source region previously enriched in Sr and light rare earth elements, with subsequent minor fractional crystallization of olivine + kaersutite. Dynamic flow crystallization processes operating within conduit systems from mantle pressures are capable of yielding large volumes of evolved phonolitic liquids from primary basanitic liquids, if magma flow rates are appropriate. This mechanism may provide an explanation for the volumetric bias towards salic differentiates in some alkalic provinces.  相似文献   

14.
Miocene to Recent volcanism in northwestern Arabia producedthe largest intraplate volcanic field on the Arabian plate (HarratAsh Shaam, Jordan). The chemically and isotopically diversevolcanic field comprises mafic alkali basalts and basanites.The magmas underwent limited fractional crystallization of ol± cpx ± plag and rare samples have assimilatedup to 20% of Late Proterozoic crust en route to the surface.However, there are subtle Sr–Nd–Pb isotopic variations(87Sr/86Sr = 0·70305–0·70377, 143Nd/144Nd= 0·51297–0·51285, 206Pb/204Pb = 18·8–19·2),which exhibit marked correlations with major elements, incompatibletrace element ratios and abundances in relatively primitivebasalts (MgO >8·5 wt %), and cannot be explained byfractional crystallization and crustal contamination alone.Instead, the data require polybaric melting of heterogeneoussources. Semi-quantitative melt modelling suggests that thisheterogeneity is the result of small degree melts (2–5%)from spinel- and garnet-facies mantle, inferred to be shallowArabian lithosphere, that mixed with smaller degree melts (<1%)from a predominantly deep garnet-bearing asthenospheric(?) sourcewith ocean island basalt characteristics. The latter may bea ubiquitous part of the asthenosphere but is preferentiallytapped at small degrees of partial melting. Volcanism in Jordanappears to be the result of melting lithospheric mantle in responseto lithospheric extension. With time, thinning of the lithosphereallowed progressively deeper mantle (asthenosphere?) to be activatedand melts from this to mix with the shallower lithospheric mantlemelts. Although Jordanian intraplate volcanism is isotopicallysimilar to examples of Late Cenozoic volcanism throughout theArabian peninsula (Israel, Saudi Arabia), subtle chemical andisotopic differences between Yemen and Jordan intraplate volcanismsuggest that the Afar plume has not been channelled northwestwardsbeneath the Arabian plate and played no role in producing thenorthern Saudi Arabian and Jordan intraplate volcanic fields. KEY WORDS: asthenosphere; intraplate volcanism; Jordan; lithospheric mantle; Sr–Nd–Pb isotopes  相似文献   

15.
Major, trace element and Sr isotopic compositions have been determined on 21 lava samples from Vico volcano, Roman Province, Central Italy. The rocks investigated range from leucite tephritic phonolites to leucite phonolites and trachytes. Trace element compositions are characterized by high enrichments of incompatible elements which display strong variations in rocks with a similar degree of evolution. Well-defined linear trends are observed between pairs of incompatible trace elements such as Th-Ta, Th-La, Th-Hf. A decrease of Large Ion Lithophile (LIL) elements abundance contemporaneously with the formation of a large central caldera is one of the most prominent characteristics of trace element distribution. Sr isotope ratios range from 0.71147 to 0.71037 in the pre-caldera lavas and decreases to values of 0.70974–0.70910 in the lavas erupted after the caldera collapse. Theoretical modelling of geochemical and Sr isotopic variations indicates that, while fractional crystallization was an important evolutionary process, AFC and mixing also played key roles during the evolution of Vico volcano. AFC appears to have dominated during the early stages of the volcanic history when evolved trachytes with the highest Sr isotope ratios were erupted. Mixing processes are particularly evident in volcanites emplaced during the late stages of Vico evolution. According to the model proposed, the evolution of potassic magmas emplaced in a shallow-level reservoir was dominated by crystal fractionation plus wall rock assimilation and mixing with ascending fresh mafic magma. This process generated a range of geochemical and isotopic compositions in the mafic magmas which evolved by both AFC and simple crystal liquid fractionation, producing evolved trachytes and phonolites with variable trace element and Sr isotopic compositions.  相似文献   

16.
Petrogenesis of Tertiary Mafic Alkaline Magmas in the Hocheifel, Germany   总被引:5,自引:0,他引:5  
Primitive nephelinites and basanites from the Tertiary Hocheifelarea of Germany (part of the Central European Volcanic Province;CEVP) have high Mg-number (>0·64), high Cr and Nicontents and strong light rare earth element enrichment butsystematic depletion in Rb, K and Ba relative to trace elementsof similar compatibility in anhydrous mantle. Alkali basaltsand more differentiated magmatic rocks have lower Mg-numberand lower abundances of Ni and Cr, and have undergone fractionationof mainly olivine, clinopyroxene, Fe–Ti oxide, amphiboleand plagioclase. Some nephelinites and basanites approach theSr–Nd–Pb isotope compositions inferred for the EAR(European Asthenospheric Reservoir) component. The Nd–Sr–Pbisotope composition of the differentiated rocks indicates thatassimilation of lower crustal material has modified the compositionof the primary mantle-derived magmas. Rare earth element meltingmodels can explain the petrogenesis of the most primitive maficmagmatic rocks in terms of mixing of melt fractions from anamphibole-bearing garnet peridotite source with melt fractionsfrom an amphibole-bearing spinel peridotite source, both sourcescontaining residual amphibole. It is inferred that amphibolewas precipitated in the asthenospheric mantle beneath the Hocheifel,close to the garnet peridotite–spinel peridotite boundary,by metasomatic fluids or melts from a rising mantle diapir orplume. Melt generation with amphibole present suggests relativelylow mantle potential temperatures (<1200°C); thus themantle plume is not thermally anomalous. A comparison of recentlypublished Ar/Ar ages for Hocheifel basanites with the geochemicaland isotopic composition of samples from this study collectedat the same sample sites indicates that eruption of earlierlavas with an EM signature was followed by the eruption of laterlavas derived from a source with EAR or HIMU characteristics,suggesting a contribution from the advancing plume. Thus, theHocheifel area represents an analogue for magmatism during continentalrift initiation, during which interaction of a mantle plumewith the overlying lithosphere may have led to the generationof partial melts from both the lower lithosphere and the asthenosphere. KEY WORDS: alkali basalts; continental volcanism; crustal contamination; partial melting; Eifel, Germany  相似文献   

17.
An 40Ar/39Ar age of 45·1 Ma determined for lavas fromnorthern Saipan confirms that these high-silica rhyolites eruptedduring the ‘proto-arc’ stage of volcanism in theIzu–Bonin–Mariana system, which is characterizedelsewhere by eruption of boninitic lavas. Incompatible traceelement concentrations and Sr, Hf, Nd, and Pb isotope ratiosfor these rhyolites are transitional between those of c. 48Ma boninitic lavas and post-38 Ma ‘first-arc’ andesitesand dacites from Saipan and Rota that have typical subduction-relatedcompositions. These transitional compositions are modeled bycrystal fractionation of parental tholeiitic basalt combinedwith assimilation of young boninitic crust. A second stage ofRayleigh fractionation in the upper crust is required by SiO2concentrations that exceed 77 wt % and near-zero compatibleelement concentrations. First-arc magma compositions are consistentwith fractionation of basalt and assimilation of crust similarin composition to the first-arc magmas themselves. The mantlesources of the proto-arc and first-arc lavas from Saipan andRota are similar to those of Philippine back-arc basin basaltsbased on Nd and Hf isotopic compositions. The Pb isotope compositionsof these lavas are between those of Pacific sea-floor basaltsand Jurassic and younger cherty and clay-rich sediments. Thiscontrasts with the boninitic proto-arc volcanic rocks from Guamand Deep Sea Drilling Project Sites 458 and 459 that have Pbisotope compositions similar to Pacific basin basalts and volcaniclasticsediments. The preferred explanation for the difference in thenature of proto-arc volcanism between Saipan and other fore-arclocations is that the crust ceased extending 3–4 Myr earlierbeneath Saipan. This was caused by a change from mantle upwelling,fore-arc extension, and shallow melting to an environment dominatedby more normal mantle wedge convection, stable crust, and deepermelting. KEY WORDS: rhyolite; andesite; Mariana arc; isotope ratios; trace elements  相似文献   

18.
The Dominique drill hole has penetrated the volcanic shieldof Eiao island (Marquesas) down to a depth of 800 m below thesurface and 691•5 m below sea-level with a percentage ofrecovery close to 100%. All the lavas encountered were emplacedunder subaerial conditions. From the bottom to the top are distinguished:quartz and olivine tholeiites (800–686 m), hawaiites,mugearites and trachyte (686–415 m), picritic basalts,olivine tholeiites and alkali basalts (415–0 m). The coredvolcanic pile was emplaced between 5•560•07 Ma and5•220•06 Ma. Important chemical changes occurred during this rather shorttime span (0•34 0•13 Ma). In particular, the lowerbasalts differ from the upper ones in their lower concentrationsof incompatible trace elements and their Sr, Nd and Pb isotopicsignature being closer to the HIMU end-member, whereas the upperbasalts are EM II enriched. The chemical differences betweenthe two basalt groups are consistent with a time-related decreasein the degree of partial melting of isotopically heterogeneoussources. It seems unlikely that these isotopic differences reflectchanges in plume dynamics occurring in such a short time span,and we tentatively suggest that they result from a decreasingdegree of partial melting of a heterogeneous EM II–HIMUmantle plume. Some of the intermediate magmas (the uppermost hawaiites andmugearites) are likely to be derived from parent magmas similarto the associated upper basalts through simple fractionationprocesses. Hawaiites, mugearites and a trachyte from the middlepart of the volcanic sequence have Sr–Nd isotopic signaturessimilar to those of the lower basalts but they differ from themin their lower 206Pb/204Pb ratios, resulting in an increasedDMM signature. Some of the hawaiites-mugearites also displayspecific enrichments in P2O5, Sr and REE which are unlikelyto result from simple fractionation processes. The isotopicand incompatible element compositions of the intermediate rocksare consistent with the assimilation of MORB-derived wall rocksduring fractional crystallization. The likely contaminant correspondsto Pacific oceanic crust, locally containing apatite-rich veinsand hydrothermal sulphides. We conclude that a possible explanationfor the DMM signature in ocean island basalts is a chemicalcontribution from the underlying oceanic crust and that studiesof intermediate rocks may be important to document the originof the isotopic features of plume-derived magmas. KEY WORDS: alkali basalt; assimilation; mantle heterogeneity; Marquesas; tholeiile *Corresponding author  相似文献   

19.
Petrological and geochemical data are reported for basalts andsilicic peralkaline rocks from the Quaternary Gedemsa volcano,northern Ethiopian rift, with the aim of discussing the petrogenesisof peralkaline magmas and the significance of the Daly Gap occurringat local and regional scales. Incompatible element vs incompatibleelement diagrams display smooth positive trends; the isotoperatios of the silicic rocks (87Sr/86Sr = 0·70406–0·70719;143Nd/144Nd = 0·51274–0·51279) encompassthose of the mafic rocks. These data suggest a genetic linkbetween rhyolites and basalts, but are not definitive in establishingwhether silicic rocks are related to basalts through fractionalcrystallization or partial melting. Geochemical modelling ofincompatible vs compatible elements excludes the possibilitythat peralkaline rhyolites are generated by melting of basalticrocks, and indicates a derivation by fractional crystallizationplus moderate assimilation of wall rocks (AFC) starting fromtrachytes; the latter have exceedingly low contents of compatibleelements, which precludes a derivation by basalt melting. ContinuousAFC from basalt to rhyolite, with small rates of crustal assimilation,best explains the geochemical data. This process generated azoned magma chamber whose silicic upper part acted as a densityfilter for mafic magmas and was preferentially tapped; maficmagmas, ponding at the bottom, were erupted only during post-calderastages, intensively mingled with silicic melts. The large numberof caldera depressions found in the northern Ethiopian riftand their coincidence with zones of positive gravity anomaliessuggest the occurrence of numerous magma chambers where evolutionaryprocesses generated silicic peralkaline melts starting frommafic parental magmas. This suggests that the petrological andvolcanological model proposed for Gedemsa may have regionalsignificance, thus furnishing an explanation for the large-volumeperalkaline ignimbrites in the Ethiopian rift. KEY WORDS: peralkaline rhyolites; geochemistry; Daly Gap; Gedemsa volcano; Ethiopian rift  相似文献   

20.
The Miocene to Quaternary lavas of northwestern Syria range from basanite, alkali basalts, and tholeiites to basaltic andesites, hawaiites, and mugearites. Crustal assimilation and fractional crystallization processes (AFC) modified the composition of the mantle derived magmas. Crustal assimilation is indicated by decreasing Nb/U (52.8–17.9) and increasing Pb/Nd (0.09–0.21) and by variable isotopic compositions of the lavas (87Sr/86Sr: 0.7036–0.7048, 143Nd/144Nd: 0.51294–0.51269, 206Pb/204Pb: 18.98–18.60) throughout the differentiation. Modeling of the AFC processes indicates that the magmas have assimilated up to 25% of continental upper crust. The stratigraphy of the lavas reveals decreasing degrees and increasing depths of melting with time and the strongly fractionated heavy rare earth elements indicate melt generation in the garnet stability field. Modeling of melt formation based on trace element contents suggests that 8–10% melting of the asthenospheric mantle source produced the tholeiites, whereas basanite and alkali basalts are formed by 2–4% melting of a similar source.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号