首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A fundamental geological tenet is that as landscapes evolve over graded to geologic time, geologic structures control patterns of topographic distribution in mountainous areas such that terrain underlain by competent rock will be higher than terrain underlain by incompetent rock. This paper shows that in active orogens where markedly weak and markedly strong rocks are juxtaposed along contacts that parallel regional structures, relatively high topography can form where strain is localized in the weak rock. Such a relationship is illustrated by the topography of the central Coast Ranges between the Pacific coastline and the San Andreas fault zone (SAFZ), and along the length of the Gabilan Mesa (the “Gabilan Mesa segment” of the central Coast Ranges). Within the Gabilan Mesa segment, the granitic upper crust of the Salinian terrane is in contact with the accretionary-prism mélange upper crust of the Nacimiento terrane along the inactive Nacimiento fault zone. A prominent topographic lineament is present along most of this lithologic boundary, approximately 50 to 65 km southwest of the SAFZ, with the higher topography formed in the mélange on the southwest side of the Nacimiento fault.This paper investigates factors influencing the pattern of topographic development in the Gabilan Mesa segment of the central Coast Ranges by correlating shortening magnitude with the upper-crust compositions of the Salinian and Nacimiento terranes. The fluvial geomorphology of two valleys in the Gabilan Mesa, which is within the Salinian terrane, and alluvial geochronology based on optically-stimulated luminescence (OSL) age estimates, reveal that the magnitude of shortening accommodated by down-to-the-southwest tilting of the mesa since 400 ka is less than 1 to 2 m. Our results, combined with those of previous studies, indicate that at least 63% to 78% of late-Cenozoic, northeast-southwest directed, upper-crustal shortening across the Gabilan Mesa segment has been accommodated within the Nacimiento terrane. This is significant because perpendicular to orogenic strike the Nacimiento terrane constitutes less than ¼ of the distance between the coast and the SAFZ, and the other ¾ (or greater) of the distance between the coast and the SAFZ is underlain by the granitic upper crust of the Salinian terrane. We propose that strain and mountain building are localized within the Nacimiento terrane because it consists predominantly of the relatively weak Franciscan Complex mélange, and because the upper crust of the Salinian terrane is composed of relatively strong granitic rocks. Our hypothesis is supported by the distribution of post-seismic surface uplift associated with the 2003, 6.5 MW San Simeon earthquake, which mimics the topography of the southwestern part of the Gabilan Mesa segment of the central Coast Ranges.  相似文献   

2.
A palaeomagnetic study of 115 samples (328 specimens) from 22 sites of the Mid- to Upper Cretaceous Bagh Group underlying the Deccan Traps in the Man valley (22°  20'N, 75°  5'E) of the Narmada Basin is reported. A characteristic magnetization of dominantly reverse polarity has been isolated from the entire rock succession, whose depositional age is constrained within the Cretaceous Normal Superchron. Only a few samples in the uppermost strata have yielded either normal or mixed polarity directions. The overall mean of reverse magnetization is D m=144°, I m=47° ( α 95=2.8°, k =152, N =18 sites) with the corresponding S-pole position 28.7°S, 111.2°E ( A 95=3.1°) and a palaeolatitude of 28°S±3°. The characteristic remanence is carried dominantly by magnetite. Similar magnetizations of reverse polarity are also exhibited by Deccan basalt samples and a mafic dyke in the study area. This pole position falls near the Late Cretaceous segment of the Indian APWP and is concordant with poles reported from the Deccan basalt flows and dated DSDP cores (75–65  Ma) of the Indian Ocean. It is therefore concluded that the Bagh Group in the eastern part of the Narmada Basin has been pervasively remagnetized by the igneous activity of Deccan basalt effusion. This overprinted palaeomagnetic signature in the Bagh Group indicates a counter-clockwise rotation by 13°±3° and a latitudinal drift northwards by 3°±3° of the Indian subcontinent during Deccan volcanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号