首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
Polarization is the next frontier of cosmic microwave background analysis, but its signal is dominated over much of the sky by foregrounds which must be carefully removed. To determine the efficacy of this cleaning, it is necessary to have sensitive tests for residual foreground contamination in polarization sky maps. The dominant Galactic foregrounds introduce a large-scale anisotropy on to the sky, so it makes sense to use a statistic sensitive to overall directionality for this purpose. Here, we adapt the rapidly computable     statistic of Bunn and Scott to polarization data, and demonstrate its utility as a foreground monitor by applying it to the low-resolution Wilkinson Microwave Anisotropy Probe 3-yr sky maps. With a thorough simulation of the maps' noise properties, we find no evidence for contamination in the foreground cleaned sky maps.  相似文献   

2.
In this paper we simulate a deep multi-frequency zenith-field sky survey on RATAN-600 (the RZF survey). In our simulations we use the 1.4-GHz sky images obtained in the NVSS survey. We convolved NVSS images with the two-dimensional power beam pattern of RATAN-600 and obtain simulated 24-hour scans of sky transits at all wavelengths of the RZF survey. For the 7.6-cm wavelength we analyze the effect of the image area size on the results of the simulation. We estimate the accuracy of the determination of source fluxes on simulated scans and derive the distributions of the spectral indices of the sources. We use the simulated scans to clean real records of the RZF survey at 7.6 cm. The standard error of the residual noise at this wavelength is about 1 mJy.  相似文献   

3.
We present measurements of the clustering of hot and cold patches in the microwave background sky as measured from the Wilkinson Microwave Anisotropy Probe 5-year data. These measurements are compared with theoretical predictions which assume that the cosmological signal obeys Gaussian statistics. We find significant differences from the simplest Gaussian-based prediction. However, the measurements are sensitive to the fact that the noise is spatially inhomogeneous (e.g. because different parts of the sky were observed for different lengths of time). We show how to account for this spatial inhomogeneity when making predictions. Differences from the Gaussian-based expectation remain even after this more careful accounting of the noise. In particular, we note that hot and cold pixels cluster differently within the same temperature thresholds at few-degree scales. While these findings may indicate primordial non-Gaussianity, we discuss other plausible explanations for these discrepancies. In addition, we find some deviations from Gaussianity at sub-degree scales, especially in the W band, whose origin may be associated with extragalactic dust emission.  相似文献   

4.
We discuss an approach to the component separation of microwave, multifrequency sky maps as those typically produced from cosmic microwave background (CMB) anisotropy data sets. The algorithm is based on the two-step, parametric, likelihood-based technique recently elaborated on by Eriksen et al., where the foreground spectral parameters are estimated prior to the actual separation of the components. In contrast with the previous approaches, we accomplish the former task with help of an analytically derived likelihood function for the spectral parameters, which, we show, yields estimates equal to the maximum likelihood values of the full multidimensional data problem. We then use these estimates to perform the second step via the standard, generalized-least-squares-like procedure. We demonstrate that the proposed approach is equivalent to a direct maximization of the full data likelihood, which is recast in a computationally tractable form. We use the corresponding curvature matrices to characterize statistical properties of the recovered parameters. We incorporate in the formalism some of the essential features of the CMB data sets, such as inhomogeneous pixel domain noise, unknown map offsets as well as calibration errors and study their consequences for the separation. We find that the calibration is likely to have a dominant effect on the precision of the spectral parameter determination for a realistic CMB experiment. We apply the algorithm to simulated data and discuss the results. Our focus is on partial sky, total intensity and polarization, CMB experiments such as planned balloon-borne and ground-based efforts, however, the techniques presented here should be also applicable to the full-sky data as for instance, those produced by the Wilkinson Microwave Anisotropy Probe ( WMAP ) satellite and anticipated from the Planck mission.  相似文献   

5.
The map-making step of cosmic microwave background (CMB) data analysis involves linear inversion problems that cannot be performed by a brute-force approach for the large time-lines of today. In this paper we present optimal vector-only map-making methods, which are an iterative COBE method, a Wiener direct filter and a Wiener iterative method. We apply these methods on diverse simulated data, and we show that they produce very well restored maps, by removing nearly completely the correlated noise that appears as intense stripes on the simply pixel-averaged maps. The COBE iterative method can be applied to any signals, assuming the stationarity of the noise in the time-line. The Wiener methods assume both the stationarity of the noise and the sky, which is the case for CMB-only data. We apply the methods to Galactic signals too, and test them on balloon-borne experiment strategies and on a satellite whole-sky survey.  相似文献   

6.
Fluctuations in the brightness of the background radiation can lead to confusion with real point sources. This type of confusion with background emission is relevant when making infrared (IR) observations with relatively large beam sizes, since the amount of fluctuation tends to increase with the angular scale. To quantitively assess the effect of the background emission on the detection of point sources for current and future far-IR observations by space-borne missions such as Spitzer , ASTRO-F , Herschel and Space Infrared Telescope for Cosmology and Astrophysics ( SPICA ), we have extended the Galactic emission map to a higher level of angular resolution than that of the currently available data. Using this high-resolution map, we estimate the sky confusion noise owing to the emission from interstellar dust clouds or cirrus, based on fluctuation analysis and detailed photometry over realistically simulated images. We find that the confusion noise derived by simple fluctuation analysis agrees well with the results from realistic simulations. Although sky confusion noise becomes dominant in long wavelength bands  (>100 μm)  with 60–90 cm aperture missions, it is expected to be two orders of magnitude lower for the next generation of space missions (with larger aperture sizes) such as Herschel and SPICA .  相似文献   

7.
8.
白仲瑞  张垒  叶中付 《天文学报》2007,48(4):507-514
天光是天体观测中的一种重要噪声源.减天光问题是制约多目标光纤光谱观测深度的重要因素.主分量分析(PCA)是统计学的一种分析方法,它可以用来寻找各个天光谱之间的关系,以进一步获得目标光谱中含有的天光成分.为了研究LAMOST的减天光方法,用SDSS的一组原始观测数据进行了仿真实验,实验结果表明,采用PCA方法比SDSS处理程序能够更有效地减天光.最后对PCA方法在LAMOST中的应用前景进行了展望.  相似文献   

9.
The present generation of weak lensing surveys will be superseded by surveys run from space with much better sky coverage and high level of signal-to-noise ratio, such as the Supernova/Acceleration Probe ( SNAP ). However, removal of any systematics or noise will remain a major cause of concern for any weak lensing survey. One of the best ways of spotting any undetected source of systematic noise is to compare surveys that probe the same part of the sky. In this paper we study various measures that are useful in cross-correlating weak lensing surveys with diverse survey strategies. Using two different statistics – the shear components and the aperture mass – we construct a class of estimators which encode such cross-correlations. These techniques will also be useful in studies where the entire source population from a specific survey can be divided into various redshift bins to study cross-correlations among them. We perform a detailed study of the angular size dependence and redshift dependence of these observables and of their sensitivity to the background cosmology. We find that one-point and two-point statistics provide complementary tools which allow one to constrain cosmological parameters and to obtain a simple estimate of the noise of the survey.  相似文献   

10.
We have made scanning observations with the HartRAO 26-m radio telescope to obtain a pencil-beam map of 67 per cent of the sky at 2326 MHz. This is the highest resolution and highest frequency radio continuum map of this type made of such a large area of sky.   In this paper we describe the observations and data reduction procedures used to produce the survey. The resulting map has an angular resolution (HPBW) of 20 arcmin, and the rms pointing accuracy is 1.2 arcmin. The rms noise fluctuations are less than 30-mK T FB over the whole map. We estimate that the uncertainty in the temperature scale is less than 5 per cent, and that the error in the absolute zero level is better than 80-mK T FB in any direction.   High-contrast half-tone images of the data with a model of the diffuse galactic background subtracted are presented. These images show many complex emission structures up to and beyond 50° latitude, and illustrate the quality of the data. Extracts from the survey data are available via FTP by arrangement with the authors.  相似文献   

11.
Flexion is the significant third-order weak gravitational lensing effect responsible for the weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate how flexion measurements can be used to measure galaxy halo density profiles and large-scale structure on non-linear scales, via galaxy–galaxy lensing, dark matter mapping and cosmic flexion correlation functions. We describe the origin of gravitational flexion, and discuss its four components, two of which are first described here. We also introduce an efficient complex formalism for all orders of lensing distortion. We proceed to examine the flexion predictions for galaxy–galaxy lensing, examining isothermal sphere and Navarro–Frenk–White (NFW) profiles and both circularly symmetric and elliptical cases. We show that in combination with shear we can precisely measure galaxy masses and NFW halo concentrations. We also show how flexion measurements can be used to reconstruct mass maps in two-dimensional projection on the sky, and in three dimensions in combination with redshift data. Finally, we examine the predictions for cosmic flexion, including convergence–flexion cross-correlations, and we find that the signal is an effective probe of structure on non-linear scales.  相似文献   

12.
One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.  相似文献   

13.
We develop a new method for estimating and removing the spectrum of the sky from deep spectroscopic observations. Our method does not rely on simultaneous measurement of the sky spectrum with the object spectrum. The technique is based on the iterative subtraction of continuum estimates and eigenvector sky models derived from singular value decompositions of sky spectra and sky spectra residuals. Using simulated data derived from small-telescope observations, we demonstrate that the method is effective for faint objects on large telescopes. We discuss simple methods to combine our new technique with the simultaneous measurement of sky to obtain sky subtraction very near the Poisson limit.  相似文献   

14.
The results of a reduction of the dataset obtained with the RATAN-600 within the framework of the “Cosmological Gene” project are reported. The project was performed in order to estimate the contribution of atmospheric noise in observations of Galactic background radiation. Atmospheric noise prevails on time scales exceeded 10–100 seconds. The efficiency of preselecting the data with low atmospheric noise on the time scales of interest is demonstrated. The potential of the “Cosmological Gene” project for different accumulation times in the sky area studied are assessed with the effect of real atmospheric noise taken into account.  相似文献   

15.
Fast heuristically weighted, or pseudo-C, estimators are a frequently used method for estimating power spectra in CMB surveys with large numbers of pixels. Recently, Challinor and Chon showed that the E–B mixing in these estimators can become a dominant contaminant at low noise levels, ultimately limiting the gravity wave signal which can be detected on a finite patch of sky. We define a modified version of the estimators which eliminates E–B mixing and is near-optimal at all noise levels.  相似文献   

16.
Despite the fact that the physics of the cosmic microwave background anisotropies is most naturally expressed in Fourier space, pixelized maps are almost always used in the analysis and simulation of microwave data. A complementary approach is investigated here, in which maps are used only in the visualization of the data, and the temperature anisotropies and polarization are only ever expressed in terms of their spherical multipoles. This approach has a number of advantages: there is no information loss (assuming a band-limited observation); deconvolution of asymmetric beam profiles and the temporal response of the instrument are naturally included; correlated noise can easily be taken into account, removing the need for additional 'destriping'; polarization is also analysed in the same framework; and reliable estimates of the spherical multipoles of the sky and their errors are obtained directly for subsequent component separation and power spectrum estimation. The formalism required to analyse experiments which survey the full sky by scanning on circles is derived here, with particular emphasis on the Planck mission. A number of analytical results are obtained in the limit of simple scanning strategies. Although there are non-trivial computational obstacles to be overcome before the techniques described here can be implemented at high resolution, if these can be overcome the method should allow for a more robust return from the next generation of full-sky microwave background experiments.  相似文献   

17.
We reexamine the energetics of nonthermal-electron acceleration in solar noise storms. A new result is obtained for the minimum nonthermal-electron number density required to produce a Langmuir-wave population of sufficient intensity to power the noise-storm emission. We combine this constraint with the stochastic electron acceleration formalism developed by Subramanian and Becker (2005) to derive a rigorous estimate for the efficiency of the overall noise-storm emission process, beginning with nonthermal-electron acceleration and culminating in the observed radiation. We also calculate separate efficiencies for the electron acceleration–Langmuir wave generation stage and the Langmuir wave–noise-storm production stage. In addition, we obtain a new theoretical estimate for the energy density of the Langmuir waves in noise-storm continuum sources.  相似文献   

18.
The complete set of data from the Tenerife 10-GHz (8° FWHM) twin-horn, drift scan experiment is described. These data are affected by both long-term atmospheric baseline drifts and short-term noise. A new maximum entropy procedure, utilizing the time invariance and spatial continuity of the astronomical signal, is used to achieve a clean separation of these effects from the astronomical signal, and to deconvolve the effects of the beam-switching. We use a fully positive/negative algorithm to produce two-dimensional maps of the intrinsic sky fluctuations. Known discrete sources and Galactic features are identified in the deconvolved map. The data from the 10-GHz experiment, after baseline subtraction with MEM, are then analysed using conventional techniques, and new constraints on Galactic emission are made.  相似文献   

19.
We present results from a study of the impact of uncorrelated 1/ f noise on the extraction of spatial structure, on a range of scales, from sky mapping observations made using the Herschel-SPIRE (the spectral and photometric imaging receiver) photometer in the scan-map mode. These studies were carried out using a detailed instrument simulator, and the output reduced using the map-making algorithm to be implemented in the SPIRE data pipeline. The influence of source size scale, telescope-scanning rate and 1/ f noise knee frequency is investigated, and operational bounds to the expected losses are presented, using the case of zero 1/ f (white) noise as a benchmark. Both cross-linked and non-cross-linked observing options are studied. The results presented here represent the best current estimate of the sensitivity of the SPIRE photometer to emission on arbitrary scales. The data presented are general and scalable to any SPIRE observation made using the scanning mode.  相似文献   

20.
We report measurements from which we determine the spatial structure of the lunar contribution to night sky brightness, taken at the LSST site on Cerro Pachon in Chile. We use an array of six photodiodes with filters that approximate the Large Synoptic Survey Telescope’s u, g, r, i, z, and y bands. We use the sun as a proxy for the moon, and measure sky brightness as a function of zenith angle of the point on sky, zenith angle of the sun, and angular distance between the sun and the point on sky. We make a correction for the difference between the illumination spectrum of the sun and the moon. Since scattered sunlight totally dominates the daytime sky brightness, this technique allows us to cleanly determine the contribution to the (cloudless) night sky from backscattered moonlight, without contamination from other sources of night sky brightness. We estimate our uncertainty in the relative lunar night sky brightness vs. zenith and lunar angle to be between 0.3–0.7 mags depending on the passband. This information is useful in planning the optimal execution of the LSST survey, and perhaps for other astronomical observations as well. Although our primary objective is to map out the angular structure and spectrum of the scattered light from the atmosphere and particulates, we also make an estimate of the expected number of scattered lunar photons per pixel per second in LSST, and find values that are in overall agreement with previous estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号