首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We compute a new grid of plage models to determine the difference in temperature versus mass column density structure T(m) between plage regions and the quiet solar chromosphere, and to test whether the solar chromosphere is geometrically thinner in plages. We compare partial redistribution calculations of Mg ii h and k and Ca ii K to NRL Skylab observations of Mg ii h and k in six active regions and Ca ii K intensities obtained from spectroheliograms taken at approximately the same time as the Mg ii observations. We find that the plage observations are better matched by models with linear (in log m) temperature distributions and larger values of m 0 (the mass column density at the 8000 K layer in the chromosphere), than by models with larger low chromosphere temperature gradients but values of m 0 similar to the quiet Sun. Our derived temperature structures are in agreement with the grid originally proposed by Shine and Linsky, but our analysis is in contrast to the study by Kelch which implies that stellar chromospheric geometrical thickness is not affected by chromospheric activity. We conclude that either the stellar Mg ii observations upon which the Kelch study was based are of poorer quality than had been assumed, or that the spatial averaging of inhomogeneous structures, which is inherent in the stellar data, does not lead to a best fit one-component model similar in detail to that of a stellar or a solar plage.Visiting Astronomer at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Staff member, Quantum Physics Division, National Bureau of Standards.  相似文献   

2.
It is well established that both total and spectral solar irradiance are modulated by variable magnetic activity on the solar surface. However, there is still disagreement about the contribution of individual solar features for changes in the solar output, in particular over decadal time scales. Ionized Ca ii K line spectroheliograms are one of the major resources for these long-term trend studies, mainly because such measurements have been available now for more than 100 years. In this paper we introduce a new Ca ii K plage and active network index time series derived from the digitization of almost 40 000 photographic solar images that were obtained at the 60-foot solar tower, between 1915 and 1985, as a part of the monitoring program of the Mount Wilson Observatory. We describe here the procedure we applied to calibrate the images and the properties of our new defined index, which is strongly correlated to the average fractional area of the visible solar disk occupied by plages and active network. We show that the long-term variation of this index is in an excellent agreement with the 11-year solar-cycle trend determined from the annual international sunspot numbers series. Our time series agrees also very well with similar indicators derived from a different reduction of the same data base and other Ca ii K spectroheliograms long-term synoptic programs, such as those at Kodaikanal Observatory (India), and at the National Solar Observatory at Sacramento Peak (USA). Finally, we show that using appropriate proxies it is possible to extend this time series up to date, making this data set one of the longest Ca ii K index series currently available.  相似文献   

3.
Spectroheliograms and disk-integrated flux monitoring in the strong resonance line of Ca ii (K line) provide the longest record of chromospheric magnetic plages. We compare recent reductions of the Ca ii K spectroheliograms obtained since 1907 at the Kodaikanal, Mt. Wilson, and US National Solar Observatories. Certain differences between the individual plage indices appear to be caused mainly by differences in the spectral passbands used. Our main finding is that the indices show remarkably consistent behavior on the multidecadal time scales of greatest interest to global warming studies. The reconstruction of solar ultraviolet flux variation from these indices differs significantly from the 20th-century global temperature record. This difference is consistent with other findings that, although solar UV irradiance variation may affect climate through influence on precipitation and storm tracks, its significance in global temperature remains elusive.  相似文献   

4.
Using the smoothed time series of maximum CME speed index for solar cycle 23, it is found that this index, analyzed jointly with six other solar activity indicators, shows a hysteresis phenomenon. The total solar irradiance, coronal index, solar radio flux (10.7?cm), Mg?ii core-to-wing ratio, sunspot area, and H?? flare index follow different paths for the ascending and the descending phases of solar cycle?23, while a saturation effect exists at the maximum phase of the cycle. However, the separations between the paths are not the same for the different solar activity indicators used: the H?? flare index and total solar irradiance depict broad loops, while the Mg?ii core-to-wing ratio and sunspot area depict narrow hysteresis loops. The lag times of these indices with respect to the maximum CME speed index are discussed, confirming that the hysteresis represents a clue in the search for physical processes responsible for changing solar emission.  相似文献   

5.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

6.
Disk-integrated solar chromospheric Caii K-line (3933.68 ) fluxes have been measured almost daily at Sacramento Peak Observatory since 1977. Using observing windows selected to mimic seasonal windows for chromospheric measurements of lower Main-Sequence stars such as those observed by Mount Wilson Observatory's HK Project, we have measured the solar rotation from the modulation of the Caii K-line flux. We track the change of rotation period from the decline of cycle 21 through the maximum of cycle 22. This variation in rotation period is shown to behave as expected from the migration of active regions in latitude according to Maunder's butterfly diagram, including an abrupt change in rotation period at the transition from cycle 21 to cycle 22. These results indicate the successful detection of solar surface differential rotation from disk-integrated observations. We argue that the success of our study compared to previous investigations of the solar surface differential rotation from disk-integrated fluxes lies primarily with the choice of the length of the time-series window. Our selection of 200 days is shorter than in previous studies whose windows are typically on the order of one year. The 200-day window is long enough to permit an accurate determination of the rotation period, yet short enough to avoid complications arising from active region evolution. Thus, measurements of the variation of rotation period in lower Main-Sequence stars, especially those that appear to be correlated with long-term changes in chromospheric activity (i.e., cycles), are probably evidence for stellar surface differential rotation.  相似文献   

7.
We present a new method to reconstruct the solar spectrum irradiance in the Ly α – 400 nm region, and its variability, based on the Mg ii index and neutron-monitor measurements. Measurements of the solar spectral irradiance available in the literature have been made with different instruments at different times and different spectral ranges. However, climate studies require harmonised data sets. This new approach has the advantage of being independent of the absolute calibration and aging of the instruments. First, the Mg ii index is derived using solar spectra from Ly α (121 nm) to 410 nm measured from 1978 to 2010 by several space missions. The variability of the spectra with respect to a chosen reference spectrum as a function of time and wavelength is scaled to the derived Mg ii index. The set of coefficients expressing the spectral variability can be applied to the chosen reference spectrum to reconstruct the solar spectra within a given time frame or Mg ii index values. The accuracy of this method is estimated using two approaches: direct comparison with particular cases where solar spectra are available from independent measurements, and calculating the standard deviation between the measured spectra and their reconstruction. From direct comparisons with measurements we obtain an accuracy of about 1 to 2%, which degrades towards Ly α. In a further step, we extend our solar spectral-irradiance reconstruction back to the Maunder Minimum introducing the relationship between the Mg ii index and the neutron-monitor data. Consistent measurements of the Mg ii index are not available prior to 1978. However, we remark that over the last three solar cycles, the Mg ii index shows strong correlation with the modulation potential determined from the neutron-monitor data. Assuming that this correlation can be applied to the past, we reconstruct the Mg ii index from the modulation potential back to the Maunder Minimum, and obtain the corresponding solar spectral-irradiance reconstruction back to that period. As there is no direct measurement of the spectral irradiance for this period we discuss this methodology in light of the other proposed approaches available in the literature. The use of the cosmogenic-isotope data provides a major advantage: it provides information about solar activity over several thousands years. Using technology of today, we can calibrate the solar irradiance against activity and thus reconstruct it for the times when cosmogenic-isotope data are available. This calibration can be re-assessed at any time, if necessary.  相似文献   

8.
9.
The rare-earth ions cerium ii, lanthanum ii, dysprosium ii, and additionally zirconium ii and iron ii, are seen as weak emission features in the wings of the solar Ca ii H and K lines. The strength of these emission lines increases on the disk toward the limb. We provide recent high-resolution observations at disk center and at the limb. The identity of the weak lines is re-worked. We point out the unique role of eclipse spectra in distinguishing between the photospheric and chromospheric origins of emission lines. It is then demonstrated from our full disk (Sun-as-a-Star) and center disk archives, 1974 – 2010, that no activity cycle related signal is evident (save for the H and K lines themselves).  相似文献   

10.
Spectral line profiles of Si ii and Si iii are presented which were observed both at solar center and near the quiet solar limb with the Naval Research Laboratory EUV spectrograph of ATM/SKYLAB. Absolute intensities and line profiles are derived from the photographic data. A brief discussion is given of their center-to-limb variations and of the optical thickness of the chromosphere in these lines. Nonthermal broadening velocities are found for the optically thin lines from their full width at half maximum intensity (FWHM).Also at High Altitude Observatory for part of this work.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
The High Altitude Observatory's white light coronagraph aboard Skylab observed some 110 coronal transients - rapid changes in appearance of the corona - during its 227 days of operation. The longitudes of the origins of these transients were not distributed uniformly around the solar surface (51 of the 100 events observed in seven solar rotations arose from a single quadrant of longitude). Further, the frequency of transient production from each segment of the solar surface was well correlated with the sunspot number and Ca ii plage (area × brightness) index in the segment, rotation by rotation. This correlation implies that transients occur more often above strong photospheric and chromospheric magnetic fields, that is, in regions where the coronal magnetic field is stronger and, perhaps, more variable. This pattern of occurrence is consistent with our belief that the forces propelling transient material outward are, primarily, magnetic. A quantitative relation between transient production from an area and the Zürich sunspot number appropriate to that area is derived, and we speculate that the relation is independent of phase in the solar activity cycle. If true, the Sun may give rise to as many as 100 white light coronal transients per month at solar cycle maximum.Currently at Los Alamos Scientific Laboratory, Los Alamos, N.M., U.S.A.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
The small phase-lag between velocities observed at different chromospheric levels is interpreted as being due to acoustic waves reflected by the very hot atmospheric layers of the chromosphere-corona transition zone. We consider first an isothermal slab, then a realistic solar atmospheric model and calculate weighting functions for velocities in Ca ii lines. It is shown that taking into account these functions and integrating over horizontal wave numbers leads to a good agreement with previous observations (Mein, 1977) in the case of 8498 and 8542 Ca ii lines. For the K line, the less good agreement shows that magnetoacoustic waves become important in the upper chromospheric layers.  相似文献   

13.
High resolution spectroheliograms in the ultraviolet emission lines He i, He ii, O iv, O v, and Ne vii have been photographed during a sounding rocket flight. Simultaneously, broad band filtergrams of the far ultraviolet solar corona were obtained from the same flight. This paper describes qualitatively the spatial distribution of the UV emission. A comparison with an H filtergram is made. The most significant results can be summarized as follows: We find most of the ultraviolet emission concentrated around spicules, with different degree of concentration, decreasing with higher temperatures. 4 different areas of ultraviolet emission can be distinguished. (1) The normal network, bright in all UV emission lines from the chromosphere into the corona. (2) The coronal holes, bright in all UV emission lines up to 600 000 K but depressed in coronal lines from 1 million degrees upward. (3) The coronal depressions near active centers, absence of all ultraviolet emissions and (4) Active regions, where ultraviolet emission comes from plages, sunspots and coronal loops. High non-thermal Doppler velocities can be found in certain plage kernels around 105 to 2 × 105 K. Sunspots are bright in the ultraviolet, but do not exhibit He i or He ii emission. The corona above sunspots is weak. Sunspots do not show high non-thermal Doppler velocities. The He i and He ii emission does not follow either chromospheric, transition zone or coronal pattern; one can recognize some typical behavior of each.  相似文献   

14.
It was found that in the spectrum of the white-light flare on 11 October, 1974, at the time of continuum maximum, the intensity of K1 in the Caii K line increased very significantly and reached nearly half of the continuum intensity. The duration of this unusual increase is less than 4 min. It seems that existing semi-empirical models can reproduce neither this characteristic nor the chromospheric condensation.  相似文献   

15.
Solar observations through the atmospheric pass-band centred at 250 GHz have been made in the form of isophote maps. These show chromospheric features which have higher brightness temperatures than the mean disc temperature by up to 10%. Examination of corresponding maps at lower frequencies and also of Caii and H spectroheliograms reveals that the hot areas lie above photospheric active regions, and are regular features of the chromospheric millimetric emission having stable structure and duration of several weeks. Less frequently observed variable enhancements are also described, and linked with the formation of the stable active regions.  相似文献   

16.
We have observed the solar Caii H and K lines to obtain well-calibrated ratios of their core residual intensities. From three independent calibrations, one using a standard lamp, we conclude that the residual intensity ratio r(K3)/r(H3) is 1.048 ± 0.03 in the quiet chromosphere and 1.20 ± 0.03 in a plage region. These ratios correspond closely to those observed in stars with quiet and active chromospheres, respectively. For a chromospheric model suggested by the calcium lines and a four-level Caii ion, we compute H and K line profiles varying the direct collisional coupling and indirect radiative and collisional coupling via the 3 2 D level. We conclude that enhanced chromospheric activity in the sun and late-type stars results more from a steepening of the chromospheric thermal gradient than from a change in density.Kitt Peak National Observatory Contribution No. 530.Of the University of Colorado and the National Bureau of Standards.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

17.
Measurements of the ionized Ca ii K line are one of the major resources for long-term studies of solar and stellar activity. They also play a critical role in many studies related to solar irradiance variability, particularly as a ground-based proxy to model the solar ultraviolet flux variation that may influence the Earth’s climate. Full disk images of the Sun in Ca ii K have been available from various observatories for more than 100 years and latter synoptic Sun-as-a-star observations in Ca ii K began in the early 1970s. One of these instruments, the Integrated Sunlight Spectrometer (ISS) has been in operation at Kitt Peak (Arizona) since late 2006. The ISS takes daily observations of solar spectra in nine spectra bands, including the Ca ii K and H lines. We describe recent improvements in data reduction of Ca ii K observations, and present time variations of nine parameters derived from the profile of this spectral line.  相似文献   

18.
Satellite observations of velocity and intensity oscillations were made of the upper chromospheric line C ii 1336. The dominant period of oscillation is 300 s, with little evidence of the power peak in the range 150–200 s which has been observed in other chromospheric lines. Peak-to-peak amplitudes are 2 km s–1 and 8% in velocity and intensity, respectively. Tentative evidence for 900-s periodicity is presented. Relative phase measurements show that maximum intensity for the 300-s oscillation leads maximum blueshift by approximately 145 s. Comparison of line and background (scattered light) intensity variation shows upward wave propagation, with time delays between the 1800 continuum and C ii 1336 variation of 27 s and 70 s for different cases.  相似文献   

19.
In our previous article (Priyal et al. in Solar Phys. 289, 127, 2014) we have discussed the details of observations and methodology adopted to analyze the Ca-K spectroheliograms obtained at the Kodaikanal Observatory (KO) to study the variation of Ca-K plage areas, enhanced network (EN), and active network (AN) for Solar Cycles, namely 19, 20, and 21. Now, we have derived the areas of chromospheric features using KO Ca-K spectroheliograms to study the long-term variations of Solar Cycles 14 to 21. The comparison of the derived plage areas from the data obtained at the KO observatory for the period 1906?–?1985 with that of MWO, NSO for the period 1965?–?2002, earlier measurements made by Tlatov, Pevtsov, and Singh (Solar Phys. 255, 239, 2009) for KO data, and the SIDC sunspot numbers shows a good correlation. The uniformity of the data obtained with the same instrument remaining with the same specifications provided a unique opportunity to study long-term intensity variations in plages and network regions. Therefore, we have investigated the variation of the intensity contrast of these features with time at a temporal resolution of six months assuming that the quiet-background chromosphere remains unchanged during the period 1906?–?2005 and found that the average intensity of the AN, representing the changes in small-scale activity over solar surface, varies with solar cycle being less during the minimum phase. In addition, the average intensity of plages and EN varies with a very long period having a maximum value during Solar Cycle 19, which was the strongest solar cycle of twentieth century.  相似文献   

20.
As part of a program to estimate the solar spectrum back to the early twentieth century, we have generated fits to UV spectral irradiance measurements from 1 – 410 nm. The longer wavelength spectra (150 – 410 nm) were fit as a function of two solar activity proxies, the Mg ii core-to-wing ratio, or Mg ii index, and the total Ca ii K disk activity derived from ground based observations. Irradiance spectra at shorter wavelengths (1 – 150 nm) where used to generate fits to the Mg ii core-to-wing ratio alone. Two sets of spectra were used in these fitting procedures. The fits at longer wavelengths (150 to 410 nm) were derived from the high-resolution spectra taken by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmospheric Research Satellite (UARS). Spectra measured by the Solar EUV Experiment (SEE) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite were used for the fits at wavelengths from 1 to 150 nm. To generate fits between solar irradiance and solar proxies, this study uses the above irradiance data, the NOAA composite Mg ii index, and daily Ca ii K disk activity determined from images measured by Big Bear Solar Observatory (BBSO). In addition to the fitting coefficients between irradiance and solar proxies, other results from this study include an estimated relationship between the fraction of the disk with enhanced Ca ii K activity and the Mg ii index, an upper bound of the average solar UV spectral irradiance during periods where the solar disk contains only regions of the quiet Sun, as was believed to be present during the Maunder Minimum, as well as results indicating that slightly more than 60% of the total solar irradiance (TSI) variability occurs between 150 and 400 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号