首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a Super-Schmidt camera installed at the Cesco Observatory we are developing a program conducted to detect asteroids (especially members of the Aten Group) and comets approaching the Earth. The search strategy is based on simulations of the population of objects in this kind of orbits.  相似文献   

2.
Among 11 673 of near-Earth objects (NEOs), 52 asteroids are identified, which, together with the Eccentrids meteor system, comprise a single population of small bodies of the Solar System with the smallest orbits of high eccentricity. Some features of this unique system of bodies are discussed in this paper. The distribution of perihelion longitudes is studied for the given group of asteroids and compared to that of the Aten asteroids, which are the most similar to the Eccentrids. The dependence is obtained of the character of perihelion longitude distribution on the eccentricities of the NEO orbits. Eight asteroid stream of the Eccentrids are found. The Eccentrids asteroids approaching the Earth’s orbit along its whole length in their aphelia can pose a certain hazard for the Earth.  相似文献   

3.
A scientific collaboration between TÜB?TAK National Observatory (Turkey), Kazan State University (Russia) and Nikolaev Astronomical Observatory (Ukraine) involves observations of minor planets and near-Earth asteroids (NEAs) with the 1.5 m Russian-Turkish telescope (RTT150). Regular observations of selected asteroids in the range of 11-18 magnitudes began in 2004 with the view of determining masses of selected asteroids, improving the orbits of the NEAs, and studying physical characteristics of selected asteroids from photometric observations. More than 3000 positions of 53 selected asteroids and 11 NEAs have been obtained with an internal error in the range of 30-300 mas for a single determination. Photometric reductions of more than 4000 CCD frames are in progress. Masses of 21 asteroids were estimated through dynamical method using the ground-based optical observations, mainly from the RTT150 and Minor Planet Center. A comparison of the observational results from the RTT150 in 2004-2005 with observations of the same objects at other observatories allows us to conclude that RTT150 can be used for ground-based support in astrometry for the space mission GAIA.  相似文献   

4.
The Campo Imperatore Near Earth Object Survey (CINEOS) is an Italian survey dedicated to the search and follow-up of Near Earth Objects (NEOs). It is operated with the 90 cm f/3 Schmidt telescope at the Campo Imperatore of the Rome Astronomical Observatory (INAF-OAR) as a joint project with the Istituto di Astrofisica Spaziale and Fisica Cosmica (INAF-IASF) in Rome. Since the end of 2001 CINEOS has covered about 4,250 sq. deg to 20th magnitude in the course of about 160 nights. This effort led to the discovery of 7 Near Earth Asteroids (NEAs), 1 comet (167P/CINEOS; a member of the Centaur group) and a few other unusual objects including 2004 XH50 with a unique comet-like orbit. CINEOS has also contributed almost 2,200 preliminary designations and over 30,000 detections to the Minor Planet Center. About 20% of the survey effort was carried out at low solar elongations (LSE), although no object with an orbit interior (Inner Earth Objects, IEO class) or nearly interior to the Earth (Aten class) was found. The work at LSE was, however, very important to test survey strategies implemented with larger telescopes. We also provide the results of a CINEOS simulation on a reliable NEO population model based on the results of two larger scale surveys, Spacewatch and LINEAR.  相似文献   

5.
We report 10 micrometers infrared photometry for 22 Aten, Apollo, and Amor asteroids. Thermal models are used to derive the corresponding radiometric albedos and diameters. Several of these asteroids appear to have surfaces of relatively high thermal inertia due to the exposure of bare rock or a coarse regolith. The Apollo asteroid 3103, 1982 BB, is recognized as class E. The Jupiter-crossing Amor asteroid 3552, 1983 SA, is confirmed as class D, but low albedos remain rare for near-Earth asteroids.  相似文献   

6.
As the number of observatories located on the surface of Earth is increasing largely in decades more and more photometric data of asteroids is observed to make the research about their various physical and chemical characteristics. Compared with hundreds of thousands of asteroids found up to now, rare hundreds of three-dimensional shape models of asteroids have been built from the tremendous photometric data with incessant observations, i.e. lightcurves. For some specific asteroid already with many observed lightcurves, the unceasing observation is not too much valuable, nevertheless an additional lightcurve observed in a request viewing aspect can refine the shape model and other related parameters. This article taking the asteroid (6) HEBE for example, attempts to introduce a method to make the observation plan by combining the request of the shape model and the orbital limitation of asteroids. Through analyzing the distribution of lightcurves of (6) HEBE, small cabins without any lightcurve data are found, which can be filled by new observations at some specified dates when the positions of Asteroid, Sun, Earth are limited as the request geometry.  相似文献   

7.
The high velocity of the apparent motion of near Earth asteroids (NEAs) is the main problem in their observation. This problem is solved at the Research Institute Nikolaev Astronomical Observatory (RI NAO) with a combined observation method using the time delay and integration mode of a CCD array and a camera rotator. A total of 1317 positions of 74 NEAs were obtained at RI NAO in 2008–2012. All the observations were made using the combined-observation method. The error in observations made at RI NAO is compared with the results that were obtained at other observatories in this work.  相似文献   

8.
The atmospheric detonation of a 17 m-asteroid above Chelyabinsk, Russia on 2013 February 15 shows that even small asteroids can cause extensive damage. Earth-based telescopes have found smaller harmless objects, such as 2008 TC3, a 4 m-asteroid that was discovered 20h before it exploded over northeastern Sudan (Jenniskens, 2009). 2008 TC3 remains the only asteroid discovered before it hit Earth because it approached Earth from the night side, where it was observed by large telescopes searching for near-Earth objects (NEO’s). The larger object that exploded over Chelyabinsk approached Earth from the day side, from too close to the Sun to be detected from Earth. A sizeable telescope in an orbit about the Sun-Earth L1 (SE-L1) libration point could find objects like the “Chelyabinsk” asteroid approaching approximately from the line of sight to the Sun about a day before Earth closest approach. Such a system would have the astrometric accuracy needed to determine the time and impact zone for a NEO on a collision course. This would give at least several hours, and usually 2–4 days, to take protective measures, rather than the approximately two-minute interval between the flash and shock wave arrival that occurred in Chelyabinsk. A perhaps even more important reason for providing warning of these events, even smaller harmless ones that explode high in the atmosphere with the force of an atomic bomb, is to prevent mistaking such an event for a nuclear attack that could trigger a devastating nuclear war. A concept using a space telescope similar to that needed for an SE-L1 monitoring satellite, is already conceived by the B612 Foundation, whose planned Sentinel Space Telescope could find nearly all 140 m and larger NEO’s, including those in orbits mostly inside the Earth’s orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit (Lu, 2013). Few modifications would be needed to the Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. The spacecraft would scan 165 square degrees of the sky around the Earth every hour, finding asteroids when they are brightest (small phase angle) as they approach Earth. We will undertake Monte Carlo studies to see what fraction of asteroids 5 m and larger approaching from the Sun might be found by such a mission, and how much warning time might typically be expected. Also, we will check the overall coverage for all Earth-approaching NEO’s, including ground-based observations and observations by the recently-launched NEOSSat, which may best fill any gaps in coverage between that provided by an SE-L1 telescope and ground-based surveys. Many of the objects as large as 50 m, like the one that created Meteor Crater in Arizona, will not be found by current NEO surveys, while they would usually be seen by this possible mission even if they approached from the direction of the Sun. We should give better warning for future “Bolts out of the blue.”  相似文献   

9.
Abstract— Near‐Earth object (NEO) research plays an increasingly important role not only in solar system science but also in protecting our planetary environment as well as human society from the asteroid and comet hazard. Consequently, interest in detecting, tracking, cataloguing, and the physical characterizing of these bodies has steadily grown. The discovery rate of current NEO surveys reflects progressive improvement in a number of technical areas. An integral part of NEO discovery is astrometric follow‐up crucial for precise orbit computation and for the reasonable judging of future close encounters with the Earth, including possible impact solutions. The KLENOT Project of the Klet Observatory (South Bohemia, Czech Republic) is aimed especially at the confirmation, early follow‐up, long‐arc follow‐up, and recovery of near‐Earth objects. It ranks among the world's most prolific professional NEO follow‐up programs. The 1.06 m KLENOT telescope, put into regular operation in 2002, is the largest telescope in Europe used exclusively for observations of minor planets and comets, and full observing time is dedicated to the KLENOT team. In this paper, we present the equipment, technology, software, observing strategy, and results of the KLENOT Project obtained during its first phase from March 2002 to September 2008. The results consist of thousands of precise astrometric measurements of NEOs and also three newly discovered near‐Earth asteroids. Finally, we also discuss future plans reflecting also the role of astrometric follow‐up in connection with the modus operandi of the next generation surveys.  相似文献   

10.
We have estimated close asteroid encounters with the Earth by numerical integrations of a system with the Sun, 9 planets, and 188 near-earth-asteroids during the period 1994–4600. Asteroids approach the Earth from directions within 30? around the Sun in more than 20% of encounters with the closest distance less than 0.01 AU. Since ground-based observations cannot detect these objects, we should develop space-borne and/or lunar observatories in a short time to allow enough warning time before a catastrophic collision.  相似文献   

11.
This article describes a citizen‐science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near‐Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image bound‐aries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators (the citizens) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6% of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near‐Earth asteroids. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We have estimated close asteroid encounters with the Earth by numerical integrations of a system with the Sun, 9 planets, and 188 near-earth-asteroids during the period 1994–4600. Asteroids approach the Earth from directions within 30 around the Sun in more than 20% of encounters with the closest distance less than 0.01 AU. Since ground-based observations cannot detect these objects, we should develop space-borne and/or lunar observatories in a short time to allow enough warning time before a catastrophic collision.  相似文献   

13.
Near-Earth asteroids have attracted attention for both scientific and commercial mission applications. Due to the fact that the Earth–Moon \(\hbox {L}_{1}\) and \(\hbox {L}_{2}\) points are candidates for gateway stations for lunar exploration, and an ideal location for space science, capturing asteroids and inserting them into periodic orbits around these points is of significant interest for the future. In this paper, we define a new type of lunar asteroid capture, termed direct capture. In this capture strategy, the candidate asteroid leaves its heliocentric orbit after an initial impulse, with its dynamics modeled using the Sun–Earth–Moon restricted four-body problem until its insertion, with a second impulse, onto the \(\hbox {L}_{2}\) stable manifold in the Earth–Moon circular restricted three-body problem. A Lambert arc in the Sun-asteroid two-body problem is used as an initial guess and a differential corrector used to generate the transfer trajectory from the asteroid’s initial obit to the stable manifold associated with Earth–Moon \(\hbox {L}_{2}\) point. Results show that the direct asteroid capture strategy needs a shorter flight time compared to an indirect asteroid capture, which couples capture in the Sun–Earth circular restricted three-body problem and subsequent transfer to the Earth–Moon circular restricted three-body problem. Finally, the direct and indirect asteroid capture strategies are also applied to consider capture of asteroids at the triangular libration points in the Earth–Moon system.  相似文献   

14.
The Commission 19 (Earth Rotation) of the International Astronomical Union—IAU established the Working Group on Earth Rotation in the Hipparcos Reference Frame—WG ERHRF at 1995 to collect the optical observations of latitude and universal time variations, made during 1899.7-1992.0 in line with Earth orientation programmes (to derive Earth Orientation Parameters—EOP), with Dr. Jan Vondrák (Astronomical Institute of Academy of Sciences of the Czech Republic, Prague) as the head of WG ERHRF. Dr. Vondrák collected about 4.4 million optical observations of latitude/universal time variations made at 33 observatories. These data were used for EOP investigations, Hipparcos Catalogue—radio sources connection, etc. Nowadays, it is used to correct the positions and proper motions of stars of Hipparcos Catalogue (as an optical reference frame) using ground-based observations of some Hipparcos stars. After Hipparcos Catalogue, some new astrometric catalogues appeared (as ARIHIP, EOC-2, etc.) with better accuracy of proper motions. We use the latitude observations made by visual zenith-telescope (ZT), as classical astrometric instrument, at seven observatories (all over the world) of International Latitude Service—ILS. The observations were used in the programmes of monitoring the Earth orientation during the 20th century. We received the data from Dr. Vondrák via private communication. The observatories are Carloforte—CA, Cincinnati—CI, Gaithersburg—GT, Kitab—KZ, Mizusawa—MZZ, Tschardjui—TS and Ukiah—UK. The task is to improve proper motions in declination of the observed Hipparcos stars. The original method was developed. We removed from the instantaneous observed latitudes, all known effects (polar motion and some local instrumental errors), and the corrected latitudes were then the input data to calculate the corrections of Hipparcos proper motions in declination using the least squares method—LSM with the linear model. We did an improvement of Hipparcos proper motions in declination via mentioned latitude variations with time by using a long-term (a few decades) visual zenith-telescope data of ILS. The calculated results were compared with the ARIHIP and EOC-2 data, and the consistency were good. The main steps of the calculations and some of the results are presented here.  相似文献   

15.
《Icarus》1987,71(1):148-158
Identified as possible flyby targets for the Galileo spacecraft, Asteroids 1219 Britta and 1972 Yi Xing became the focus of a coordinated observing program. Although a subsequent change in the launch date removed these asteroids from consideration for the Galileo mission, the ground-based observing program yielded a substantial amount of information on these previously unobserved asteroids. Britta's sideral rotation period is found to be 5.57497 ± 0.00013 hr and its rotation is retrograde. The lightcurve amplitude ranged from 0.60 to 0.70 mag, depending on phase angle. Britta can be classified as an S-type asteroids based on its measured spectra and albedo. The absolute magnitude and slope parameter derived from the lightcurve maxima are H0 = 11.67 ± 0.03 and G0 = 0.03 ± 0.04. A 0.002 mag deg−1 phase reddening in B·V was also measured. 1972 Yi Xing was less well observed but a unique synodic period of 14.183 ± 0.003 hr was determined. The observed lightcurve amplitude was 0.18 mag. Five-color measurements are consistent with an S-type classification. For an assumed slope parameter G = 0.25, Yi Xing's (lightcurve maximum) absolute magnitude H0 = 13.32 ± 0.01.  相似文献   

16.
The SuperWASP project is an ultra-wide angle search for extra solar planetary transits. However, it can also serendipitously detect solar system objects, such as asteroids and comets. Each SuperWASP instrument consists of up to eight cameras, combined with high-quality peltier-cooled CCDs, which photometrically survey large numbers of stars in the magnitude range 7–15. Each camera covers a 7.8 × 7.8 degree field of view. Located on La Palma, the SuperWASP-I instrument has been observing the Northern Hemisphere with five cameras since its inauguration in April 2004.The ultra-wide angle field of view gives SuperWASP the possibility of discovering new fast moving (near to Earth) asteroids that could have been missed by other instruments. However, it provides an excellent opportunity to produce a magnitude-limited lightcurve survey of known main belt asteroids. As slow moving asteroids stay within a single SuperWASP field for several weeks, and may be seen in many fields, a survey of all objects brighter than magnitude 15 is possible. This will provide a significant increase in the total number of lightcurves available for statistical studies without the inherent bias against longer periods present in the current data sets.We present the methodology used in the automated collection of asteroid data from SuperWASP and some of the first examples of lightcurves from numbered asteroids.  相似文献   

17.
《Icarus》1987,69(1):33-50
Spectrophotometric data on groups of asteroids in different types of orbits reveal different distributions of spectral properties, depending on whether the orbits are cometary or noncometary. In a list of 10 asteroids frequently suggested on purely dynamical grounds to be extinct or dormant comets, all have properties suggestive of spectral classes D, P, or C. Preliminary IRAS albedo results support this. Objects in these classes are very dark, reddish-black to neutral-black, and prevalent among the Trojans and outer belt. Two comets observed at low activity (visible nuclei) also have properties more consistent with D asteroids than any other class (very low reported geometric albedos of 0.02 and red colors). Consistent with these results are very low albedos reported for materials in more than a dozen comets; they average 0.05. Also, sampled cometary dust particles appear to consist of dark carbonaceous materials. Dramatically different are a control group of 13 Aten/Apollo/Amor objects selected from noncometary orbits. Most are in moderate-albedo classes: 8 or 9 appear to be of class S, and only 1 is in a low-albedo class (C). These are probably mostly objects perturbed out of the inner asteroid belt. The preponderence of S's in the noncometary group, together with the preponderence of ordinary chondrites among meteorites, may be evidence that such meteorites came from S asteroids. The data indicate that extinct, dormant, inactive, and minimally active comet nuclei have low albedos (pv=a few percent) and very red to moderately red colors. As a group, their spectra are more similar to those of outer Solar System asteroids of classes D, P, and C, than to those of inner belt classes, though the observations are frequently not yet complete enough to assign definitively a spectral class. The results, taken together, support the view that dynamically identified “extinct comet candidates” are indeed outer Solar System objects probably of cometary origin. The results also support a scenario of Solar System formation in which dark carbonaceous dust dominated the spectrophotometric properties of planetesimals formed from about 2.7 AU out to at least the Trojan region at 5.2 AU. From 2.7 to at least 5.2 AU, and from class C to class D, the color of this dust reddens, apparently due to increasing amounts of red organic condensates. Comets are probably also colored to different degrees, by dust of this type, and may in some cases be even redder than D asteroids.  相似文献   

18.
19.
Tabaré Gallardo 《Icarus》2006,184(1):29-38
The aim of this work is to present a systematic survey of the strength of the mean motion resonances (MMRs) in the Solar System. We know by applying simple formulas where the resonances with the planets are located but there is no indication of the strength that these resonances have. We propose a numerical method for the calculation of this strength and we present an atlas of the MMRs constructed with this method. We found there exist several resonances unexpectedly strong and we look and find in the small bodies population several bodies captured in these resonances. In particular in the inner Solar System we find one asteroid in the resonance 6:5 with Venus, five asteroids in resonance 1:2 with Venus, three asteroids in resonance 1:2 with Earth and six asteroids in resonance 2:5 with Earth. We find some new possible co-orbitals of Earth, Mars, Saturn, Uranus and Neptune. We also present a discussion about the behavior of the resonant disturbing function and where the stable equilibrium points can be found at low and high inclination resonant orbits.  相似文献   

20.
Delta-v requirements for earth co-orbital rendezvous missions   总被引:1,自引:0,他引:1  
Earth co-orbital asteroids present advantages as potential targets for future asteroid rendezvous missions. Their prolonged proximity to Earth facilitates communication, while their Earth-like orbits mean a steady flux of solar power and no significant periodic heating and cooling of the spacecraft throughout the course of the mission. Theoretical studies show that low-inclination co-orbital orbits are more stable than high-inclination orbits. As inclination is the most significant indicator of low delta-v rendezvous orbits, there is the potential for a large population of easily accessible asteroids, with favorable engineering requirements. This study first looks at phase-independent rendezvous orbits to a large number of objects, then looks in more detail at the phase-dependent orbits to the most favorable objects. While rendezvous orbits to co-orbital objects do not have a low delta-v necessarily, some objects present energy requirements significantly less than previous rendezvous missions. Currently we find no ideal co-orbital asteroids for rendezvous missions, although theoretical Earth Trojans present very low-energy requirements for rendezvous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号