首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Neoproterozoic Katangan R.A.T. (“Roches Argilo-Talqueuses”) Subgroup is a sedimentary sequence composed of red massive to irregularly bedded terrigenous-dolomitic rocks occurring at the base of the Katangan succession in Congo. Red R.A.T. is rarely exposed in a continuous section because it was affected by a major layer-parallel décollement during the Lufilian thrusting. However, in a number of thrust sheets, Red R.A.T. is in conformable sedimentary contact with Grey R.A.T which forms the base of the Mines Subgroup. Apart from the colour difference reflecting distinct depositional redox conditions, lithological, petrographical and geochemical features of Red and Grey R.A.T. are similar. A continuous sedimentary transition between these two lithological units is shown by the occurrence of variegated to yellowish R.A.T. The D. Strat. “Dolomies Stratifiées” formation of the Mines Subgroup conformably overlies the Grey R.A.T. In addition, a transitional gradation between Grey R.A.T. and D. Strat. occurs in most Cu–Co mines in Katanga and is marked by interbedding of Grey R.A.T.-type and D. Strat.-type layers or by a progressive petrographic and lithologic transition from R.A.T. to D. Strat. Thus, there is an unquestionable sedimentary transition between Grey R.A.T. and D. Strat. and between Grey R.A.T. and Red R.A.T.The R.A.T. Subgroup stratigraphically underlies the Mines Subgroup and therefore R.A.T. cannot be comprised of syn-orogenic sediments deposited upon the Kundelungu (formerly “Upper Kundelungu”) Group as suggested by Wendorff (2000). As a consequence, the Grey R.A.T. Cu–Co mineralisation definitely is part of the Mines Subgroup Lower Orebody, and does not represent a distinct generation of stratiform Cu–Co sulphide mineralisation younger than the Roan orebodies.  相似文献   

2.
3.
4.
We present hornblende, white mica, biotite and alkali feldspar 40Ar/39Ar data from Paleo-Mesoproterozoic rocks of the Mt. Isa Inlier, Australia, which reveal a previously unrecognised post-orogenic, non-linear cooling history of part of the Northern Australian Craton. Plateau and total fusion 40Ar/39Ar ages range between 1500 and 767 Ma and record increases in regional cooling rates of up to 4 °C/Ma during 1440–1390 and 1260–1000 Ma. Forward modelling of the alkali feldspar 40Ar/39Ar Arrhenius parameters reveals subsequent increases in cooling rates during 600–400 Ma. The cooling episodes were driven by both erosional exhumation at average rates of 0.25 km/Ma and thermal relaxation following crustal heating and magmatic events. Early Mesoproterozoic cooling is synchronous with exhumation and shearing in the Arunta Block and Gawler Craton. Late Mesoproterozoic cooling could have either been driven by increased rates of exhumation, or a result of thermal relaxation following a heat pulse that was synchronous with dyke emplacement in the Arunta, Musgrave and Mt. Isa province, as well as Grenville-aged orogenesis in the Albany–Fraser Belt. Latest Neoproterozoic–Cambrian cooling and exhumation was probably driven by the convergence of part of the East Antarctic Shield with the Musgrave Block and Western Australia (Petermann Ranges Orogeny), as well as collisional tectonics that produced the Delamerian–Ross Orogen. Major changes in the stress field and geothermal gradients of the Australian plate that are synchronous with the assembly and break-up of parts of Rodinia and Gondwana resulted in shearing and repeated brittle reactivation of the Mt. Isa Inlier, probably via the displacement of long-lived basement faults within the Northern Australian Craton.  相似文献   

5.
6.
7.
The character of porcelain wares made by Nicholas Crisp early and late in his career was assessed using microchemical and petrographic data for sherds excavated from the sites of the factories he operated at Vauxhall and Bovey Tracey. The results indicate that, over time, Crisp increasingly made use of diverse types of pastes as he struggled to produce a commercially viable line of porcelain. Based on the analysis of a limited number of samples, he appears to have largely restricted himself at Vauxhall to using soapstone (Mg‐rich)‐ and flint‐glass (Pb‐rich) frit‐bearing pastes that varied in the amount of calcite they contained. He also experimented with Mg+Pb‐rich pastes at Bovey Tracey, but included a novel ingredient (barite) and varied the proportion of other minor constituents (e.g., bone ash), apparently in an effort to resolve some of the firing problems that plagued him at Vauxhall. In addition, Crisp appears to have produced bone ash (phosphatic) porcelain at Bovey Tracey, and, in collaboration with William Cookworthy, the proprietor of the Plymouth factory, fired a range of true porcelain (Si+Al‐rich) pastes. Bulk compositional data indicate that Crisp's diopside‐bearing Mg+Pb‐rich wares were derived from pastes containing talc and calcite rather than dolomite. The mineralogy of these and some contemporary magnesian/plombian porcelains are interpreted using the SiO2‐CaO‐MgO phase diagram. This diagram shows that these wares can form and preserve diopside (Ca‐Mg silicate) given suitable bulk CaO contents and kiln‐firing temperatures. Phosphatic sherds from Bovey Tracey are compositionally distinct (lower SiO2 and higher Al2O3 and bone‐ash components) from a single bone‐ash sample from Vauxhall, indicating that Crisp experimented with novel bone‐ash pastes, and was not positively influenced by the Vauxhall phosphatic recipe, if indeed one existed. True porcelains from Bovey Tracey have more extreme SiO2/Al2O3 ratios (= 2.0 [two sherds]; 4.5 [one sherd]) than their Plymouth/Bristol counterparts (SiO2/Al2O3 = 2.3–3.0). Collectively, the analytical data underscore the experimental—and ultimately unsuccessful—character of the diverse wares produced by Nicholas Crisp. © 2000 John Wiley & Sons, Inc.  相似文献   

8.
Atmospheric precipitation samples were collected in the Bohemian Karst (30 km SW from Prague, Czech Republic) at six localities in the vicinity of the limestone-quarry Čertovy schody during years 1996–2003. Samples were analyzed for major components (Na+, K+, Mg2+, Ca2+, F, Cl, NO3, HCO3, SO42−) and trace metals (Cu, Mn, Fe, Zn, Pb, Be, As, Sr, Cd, Al, Cr). Deposition fluxes were calculated from more than 10 000 elemental analyses of samples collected monthly. The fluxes of monitored substances show temporal and spatial variability. The most marked attribute is the strong affection by local emission sources confirmed by the investigation of seasonal variability, temporal trend and correlation analysis.  相似文献   

9.
10.
On rimmed shelves of Bahamian-type, characterized by chlorozoan associations and typical of tropical seas, carbonate production keeps pace with normal sea-level rise except when rapid rise or drastic environmental changes occurs. On the other hand, open temperate carbonate shelves are characterized by low carbonate production of the foramol association (molluscs, benthic foraminifera, bryozoans, coralline algae, etc.) and generally show seaward relict sediments, because carbonate production cannot keep pace with normal rate of sea-level change.

Several examples of recent drowning foramol carbonate platforms (e.g., large areas of the Mediterranean Sea, eastern-northeastern Yucatan Shelf) as well as analogous ancient drowned foramol-type carbonate platforms (e.g., early to middle Miocene of the Southern Apennines; Miami Terrace) may support the idea that the drowning of many ancient carbonate platforms has been favoured by their biogenic (foramol sensu lato) constitution. Because of their typically low rate of growth, foramol carbonate platforms are fated to be drowned even if the sea-level rise is one with which the normal growth of chlorozoan platforms can keep pace. Similar conditions may also occur in tropical areas where variations in environmental conditions, such as the presence of cold waters, changes in salinity and increased nutrients, preclude the development of chlorozoan associations.  相似文献   


11.
The tectonic deformation of the Lipari–Vulcano complex, one of the most important active volcanic areas of the Mediterranean region, is studied here through the analysis of 10 years (1996–2006) of GPS data from both three permanent and 13 non‐permanent stations. This area can be considered crucial for the understanding of the interaction between the Eurasian and African plates in the Mediterranean area, and, in general, this work emphasizes a methodological approach, already applied in other areas worldwide ( J. Geophys. Res., 1996, 101 , 27 957 ; J. Geodyn., 1999, 27 , 213 ) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari–Vulcano complex. In particular, the observed deformation pattern can be described by a combination of (1) the main N–S regional compression and (2) a NNE–SSW compression with a small right‐lateral strike slip component acting along a tectonic structure trending N°40W between the two islands. This pattern was inspected through a simplified synthetic model.  相似文献   

12.
13.
It has been proposed that tropical events could have participated in the triggering of the classic, high-latitude, iceberg-discharge Heinrich events (HE). We explore low-latitude Heinrich events equivalents at high resolution, in a piston core recovered from the tropical north-western African margin. They are characterized by an increase of total dust, lacustrine diatoms and fibrous lacustrine clay minerals. Thus, low-latitude events clearly reflect severe aridity events that occurred over Africa at the Saharan latitudes, probably induced by southward shifts of the Inter Tropical Convergence Zone. At a first approximation, it seems that there is more likely synchronicity between the high-latitude Heinrich Events (HEs) and low-latitude events (LLE), rather than asynchronous behaviours.  相似文献   

14.
15.
16.
17.
Early Acheulian assemblages in fluviolacustrine contexts at the Early Pleistocene site of ‘Ubeidiya (Jordan Valley, Israel) have been described as “living floors.” A study of variation in the surface abrasion of stone tools from several such “living floors” suggest a mixture of cultural and geological factors were involved in the formation of these assemblages. © 1999 John Wiley & Sons, Inc.  相似文献   

18.
19.
20.
In low-temperature aqueous solutions (< 100°C, pH 2–4.5), chalcopyrite (CuFeS2) does not form through direct precipitation from solution. The pathway is exclusively via precursor iron sulphides and dissolved Cu salts. The reaction of dissolved Cu (II) salts with natural hexagonal pyrrhotite (Fe0.9S) is diffusion controlled. The initial stage has an apparent activation energy of 11.4 ± 1.8 kJ mol−1 and the rate (in units of mol dm−3s−1 cm−2) is independent of the solid reactant surface area. The reaction proceeds through a series of metastable Cu-Fe-sulphide intermediaries. These phases form a series of ephemeral layers penetrating into the pyrrhotite surface. The first phase formed has the stoichiometry Cu0.1Fe0.9S. No Fe is released into the solution during its formation and this, together with the extremely low apparent activation energy and the stoichiometry, suggest that it is formed by stuffing of electron holes in the pyrrhotite structure with Cu ions. The transformation from the hexagonal close-packed arrangement of the pyrrhotite structure to the essentially cubic packing in chalcopyrite proceeds through a series of intermediaries, approximating in composition to members of the cubanite group. The rate of formation of these phases is controlled by the coupled diffusion of Fe (II), Fe (III), Cu (I) and Cu (II) species through the surface reaction zone, although the process as a whole can be approximated by steady-state diffusion of total Cu into a semi-infinite medium. Experiments with metastable precursor iron monosulphide phases, including amorphous FeS and synthetic mackinawite indicate similar reaction pathways.

The results suggest that chalcopyrite formation in low-temperature natural systems may be significantly constrained by kinetic factors. Chalcopyrite is, at least, a diagenetic mineral since its formation requires the prior formation of iron sulphides. However, at ambient temperatures its formation is probably limited to very early diagenesis.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号