首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The structure of the sedimentary cover and acoustic basement in the northeastern Russian Arctic region is analyzed. Beneath the western continuation of the North Chukchi trough and Vil’kitskii trough, a Late Caledonian (Ellesmere) folded and metamorphozed basement is discovered. It is supposed that Caledonides continue further into the Podvodnikov Basin until the Geofizikov branch. A large magnetic anomaly in the Central Arctic zone has been verified by seismostratigraphic data: the acoustic basement beneath the Mendeleev (and partially Alpha) Ridge is overlain by trapps. Wave field analysis showed that the acoustic basement of the Lomonosov Ridge has folded structure, whereas beneath the Mendeleev Ridge, the sporadic presence of a weakly folded stratum of Paleozoic platform deposits is interpreted. It is supposed that the Caledonian and Late Cimmerian fold belts in the periphery of the Arctida paleocontinent appeared as a result of collision between arctic continental masses and southern ones. After Miocene extension and block displacements identified from appearance of horsts, grabens, and transverse rises both on the shelf and in the ocean, a general subsidence took place and the present-day shelf, slope, and the deepwater part of the Arctic Ocean formed.  相似文献   

2.
Seismic data on the southern (Laptev Sea) extremity of the Lomonosov Ridge were used to develop a new structural model for the sedimentary cover. It permitted a correlation between the seismic cross-sections of the ridge crest and two deep-sea basins: the Podvodnikov Basin and the Amundsen Plain. It is the first time that a seismic model has taken into account both regional seismic-reflection profiles obtained from NP drifting ice stations and recent high-resolution CDP data. Our seismic model agrees both with geological data on the Laptev Sea continental margin and the data obtained from deep-sea drilling into the Lomonosov Ridge under the IODP-302 project. The sedimentary cover of the southern Lomonosov Ridge and adjacent parts of the Amundsen Plain and Podvodnikov Basin was dated at the Aptian–Cenozoic. The sedimentary section is divided by two main unconformities, of Campanian–Paleocene and Oligocene–Early Miocene ages. The cover contains a structurally complicated graben system, which is an extension of the New Siberian system of horsts and grabens, recognized in the shelf. Sedimentation began in the grabens in the Aptian–Albian and ended with their complete compensation in the Paleocene.  相似文献   

3.
The geological time of the formation of Alpha-Mendeleev and Lomonosov ridges is determined in a broad range from the Late Cretaceous to the Cenozoic. This does not allow researchers to have reliable insight into the evolution of the entire Amerasian Basin, which is characterized by a high hydrocarbon potential. The genesis of these ridges is still under discussion. For a more precise time assessment, the geothermal method, which is highly informative in the sense of lithospheric age, has been applied. On the basis of numerical geothermal calculations, the formation time intervals were determined at 97–79 Ma for Alpha-Mendeleev Ridge and at 69–57 Ma for Lomonosov Ridge; these ages conform to the geological-geophysical data and verify the fact that these ridges belong to the eastern part of the Russian shelf zone. The formation time of the Alpha-Mendeleev and Lomonosov ridges determined has allowed us to optimize the calculations and plate-tectonic reconstructions for the Amerasian Basin.  相似文献   

4.
《Quaternary Science Reviews》2004,23(11-13):1435-1454
Numerous short sediment cores have been retrieved from the central Arctic Ocean, many of which have been assigned sedimentation rates on the order of mm/ka implying that the Arctic Basin was starved of sediments during Plio–Pleistocene times. A review of both shorter-term sedimentation rates, through analysis of available sediment core data, and longer-term sedimentation rates, through estimates of total sediment thickness and bedrock age, suggests that cm/ka-scale rates are pervasive in the central Arctic Ocean. This is not surprising considering the physiographic setting of the Arctic Ocean, being a small land-locked basin since its initial opening during Early Cretaceous times. We thus conclude that the central Arctic Ocean has not been a sediment starved basin, either during Plio–Pleistocene times or during pre-Pliocene times. Rigorous chronstratigraphic analysis permits correlation of sediment cores over a distance of ∼2600 km, from the northwestern Amerasia Basin to the northwestern Eurasia Basin via the Lomonosov Ridge, using paleomagnetic, biostratigraphic, and cyclostratigraphic data.  相似文献   

5.
Investigations of three plausible tectonic settings of the Kerguelen hotspot relative to the Wharton spreading center evoke the on-spreading-axis hotspot volcanism of Paleocene (60-54 Ma) age along the Ninetyeast Ridge. The hypothesis is consistent with magnetic lineations and abandoned spreading centers of the eastern Indian Ocean and seismic structure and radiometric dates of the Ninetyeast Ridge. Furthermore, it is supported by the occurrence of oceanic andesites at Deep Sea Drilling Project (DSDP) Site 214, isotopically heterogeneous basalts at Ocean Drilling Program (ODP) Site 757 of approximately the same age (59-58 Ma) at both sites. Intermix basalts generated by plume-mid-ocean ridge (MOR) interaction, exist between 11° and 17°S along the Ninetyeast Ridge. A comparison of age profile along the Ninetyeast Ridge between ODP Sites 758 (82 Ma) and 756 (43 Ma) with similarly aged oceanic crust in the Central Indian Basin and Wharton Basin reveals the existence of extra oceanic crust spanning 11° latitude beneath the Ninetyeast Ridge. The extra crust is attributed to the transfer of lithospheric blocks from the Antarctic plate to the Indian plate through a series of southward ridge jumps at about 65, 54 and 42 Ma. Emplacement of volcanic rocks on the extra crust resulted from rapid northward motion (absolute) of the Indian plate. The Ninetyeast Ridge was originated when the spreading centers of the Wharton Ridge were absolutely moving northward with respect to a relatively stationary Kerguelen hotspot with multiple southward ridge jumps. In the process, the spreading center coincided with the Kerguelen hotspot and took place on-spreading-axis volcanism along the Ninetyeast Ridge.  相似文献   

6.
The Ninetyeast Ridge is one of the longest structures in the World Ocean. Owing to the seismostratigraphic analysis, three seismic complexes are distinguished in the sedimentary cover of this ridge, lower subaerial—shallow-water (SC3), transition (SC2), and upper deep-water (SC1), and nine reflectors: 0, 0a, 1, 1a, 2, 3, 4, 5, and F. On the basis of the results of correlation of seismic sections with those of deepwater sites recording the entire period of formation of the sedimentary cover of the Ninetyeast Ridge (Late Cretaceous—Quaternary), several nondepositional hiatuses are distinguished. The following reasons for these hiatuses are proposed. The hiatus in the beginning of the Early Paleocene coincides in time with the general decrease in the World Ocean level and is recorded only within the northern part of the ridge. The first “soft” collision of the Indian and Eurasian plates, as well as Paleocene—Eocene Thermal Maximum (PETM), could have been a reason for the most long-lasting hiatus in the Early—Middle Eocene in the northern and central parts of the Ninetyeast Ridge. The hiatus in the Early Oligocene is also distinguished in these parts of the ridge and is likely associated with underwater erosion. The formation of the Antarctic Circumpolar Current (ACC) and the change in the hydrodynamic regime of the Indian Ocean could have been reasons for the hiatus in the Middle Miocene, which is traced in the sedimentary cover throughout the entire Ninetyeast Ridge.  相似文献   

7.
Seismic refraction surveys conducted in 1976 and 1979 over the broken ice surface of the Arctic Ocean, reveal distinctly different crustal structures for the Fram, Makarov and Canada basins. The Canada Basin, characterized by a 2–4 km thick sedimentary layer and a distinct oceanic layer 3B of 7.5 km/s velocity has the thickest crust and is undoubtedly the oldest of the three. The crust of the Makarov Basin has a thin sedimentary layer of less than 1 km and is about 9 km in total thickness. The Fram Basin has a similarly thin sedimentary layer but is 3–4 km thicker than the Makarov as it approaches the Lomonosov Ridge near the North Pole. The ridge itself is cored by material with a velocity of 6.6 km/s and may be a metagabbro similar to oceanic layer 3A. This ridge root material extends to a depth of about 27 km, where a change occurs to upper-mantle material with a velocity of 8.3 km/s. The core is overlain by up to 6 km of material with a velocity of about 4.7 km/s which could be oceanic layer 2A basalts or continental crystalline rocks with some sedimentary material.The Fram Basin probably began to open contemporaneously with the North Atlantic about 70 m.y. ago, by spreading along the Nansen-Gakkel Ridge. Although not yet dated, the Makarov Basin is probably no older than the initiation of the Fram Basin and may be much younger. The Alpha Ridge may once have been part of the Lomonosov Ridge, splitting off to form the Makarov Basin between 70 and 25 m.y. ago and possibly contributing to the Eurekan Orogeny of 25 m.y. ago, evident on Ellesmere Island. In contrast, the likely age of the Canada Basin lies in the 125–190 m.y. range and may have been formed by the counter-clockwise rotation of Alaska and the Northwind Ridge away from the Canadian Arctic Islands. The Lomonosov Ridge emerges from this scenario as a block resulting from a strike-slip shear zone on the European continental shelf, related to the opening of the Canada basin (180-120 my) and then becomes an entity broken from this shelf by the opening of the Eurasia Basin (70-0 m.y.).  相似文献   

8.
The modern views on the structure of the oceanic and continental crust are discussed. The presented geological-geophysical information on the deep structure of the Earth’s crust of the Lomonosov Ridge, Mendeleev Rise, and Alpha Ridge, which make up the province of the Central Arctic Uplifts in the Arctic Ocean, is based on CMP, seismic-reflection, and seismic-refraction data obtained by Russian and Western researchers along geotraverses across the Amerasia Basin. It is established that the crust thickness beneath the Central Arctic Uplifts ranges from 22 to 40 km. Comparison of the obtained velocity sections with standard crust sections of different morphostructures in the World Ocean that are underlain by the typical oceanic crust demonstrates their difference with respect to the crustal structure and to the thickness of the entire crust and its individual layers. Within the continental crust, the supercritical waves reflected from the upper mantle surface play the dominant role. Their amplitude exceeds that of head and refracted waves by one to two orders of magnitude. In contrast, the refracted and, probably, interferential head waves are dominant within the oceanic crust. The Moho discontinuity is the only first-order boundary. In the consolidated oceanic crust, such boundaries are not known. The similarity in the velocity characteristics of the crust of the Alpha Ridge and Mendeleev Rise, on the one hand, and the continental crust beneath the Lomonosov Ridge, on the other, gives grounds to state that the crust of the Mendeleev Rise and Alpha Ridge belongs to the continental type. The interference mosaic pattern of the anomalous magnetic field of the Central Arctic Uplifts is an additional argument in favor of this statement. Such patterns are typical of the continental crust with intense intraplate volcanism. Interpretation of seismic crustal sections of the Central Arctic Uplifts and their comparison with allowance for characteristic features of the continental and oceanic crust indicate that the Earth’s crust of the uplifts has the continental structure.  相似文献   

9.
The inregrated geological and geophysical studies carried out in recent years in the Lomonosov Ridge and at its junction with the Eurasian shelf revealed evidence for thinned (reduced) crust in the ridge (20–25 km) and its relationship with shelf structures. We compared the parameters of deep seismic cross-sections of the shelf and Lomonosov Ridge, thus proving the existence of continental crust in the latter. Also, we analyzed the deep structure of the junction between the Lomonosov Ridge and the shelf and established a genetic geologic relationship, with no evidence that the Lomonosov Ridge moved as a terrane with respect to the shelf. In addition, seismological studies independently confirm the relationship between the Lomonosov Ridge and the adjacent shelf.The Lomonosov Ridge is a continental-crust block of a craton. The craton was reworked during the Caledonian tectonomagmatic activity with the formation of a Precambrian–Caledonian seismically unsegmented basement (upper crust) and an epi-Caledonian platform cover. Afterward, the block subsided to bathyal depths in the Late Alpine. This block and the adjacent areas of the Eastern Arctic shelf developed in the platform regime till the Late Mesozoic.  相似文献   

10.
造山带的形成、演化与周缘盆地受统一构造事件影响,"盆"与"山"在构造和沉积方面相互耦合,沉积盆地存在造山事件的响应,如生长地层、包卷层理等。生长地层为同构造或同变形阶段沉积,其沉积时代可以有效约束构造事件时代。中央造山带近东西向展布,北侧为鄂尔多斯地块,南侧为扬子地块。中央造山带的形成主要源于原—古特提斯洋的闭合,原特提斯洋在早古生代闭合,古特提斯洋在中生代闭合,后者改造前者并响应全球印支运动。印支运动的启动,一方面促使现今中国大陆雏形的形成,另一方面响应Pangea超大陆的最终汇聚,具有重要的大地构造意义。古特提斯洋闭合,华南地块和华北地块汇聚拼贴,并在鄂尔多斯盆地和四川盆地沉积地层中保留了很好的记录。笔者在鄂尔多斯盆地南缘上三叠统识别出一套生长地层,通过最年轻碎屑锆石与区内相同地层凝灰岩锆石对比,限定印支运动启动时间为233 Ma左右;在四川盆地北缘上三叠统须家河组识别出一套生长地层,通过对比分析,推测印支运动启动时间为216 Ma左右。  相似文献   

11.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

12.
We have identified an extinct E–W spreading center in the northern Natal valley on the basis of magnetic anomalies which was active from chron M11 (133 Ma) to 125.3 Ma, just before chron M2 (124 Ma) in the Early Cretaceous. Seafloor spreading in the northern Natal valley accounts for approximately 170 km of north–south motion between the Mozambique Ridge and Africa. This extension resolves the predicted overlap of the continental (central and southern) Mozambique Ridge and Antarctica in the chron M2 to M11 reconstructions from Mesozoic finite rotation parameters for Africa and Antarctica. In addition, the magnetic data reveal that the Mozambique Ridge was an independent microplate from at least 133 to 125 Ma. The northern Natal valley extinct spreading center connects to the spreading center separating the Mozambique Basin and the Riiser-Larsen Sea to the east. It follows that the northern Mozambique Ridge was either formed after the emplacement of the surrounding oceanic crust or it is the product of a very robust spreading center. To the west the extinct spreading center connects to the spreading center separating the southern Natal valley and Georgia Basin via a transform fault. Prior to chron M11, there is still a problem with the overlap of Mozambique Ridge if it is assumed to be fixed with respect to either the African or Antarctic plates. Some of the overlap can be accounted for by Jurassic deformation of the Mozambique Ridge, Mozambique Basin, and Dronning Maud land. It appears though that the Mozambique Ridge was an independent microplate from the breakup of Gondwana, 160 Ma, until it became part of the African plate, 125 Ma.  相似文献   

13.
Recent multidisciplinary geophysical measurements over the Lomonosov Ridge close to the North Pole support the widely held belief that it was formerly part of Eurasia. The known lithologies, ages, P-wave velocity structure and thickness of the crust along the outer Barents and Kara continental shelves are similar to permitted or measured values of these parameters newly acquired over the Lomonosov Ridge. Seismic, gravity and magnetic data in particular show that the ridge basement is most likely formed of early Mesozoic or older sedimentary or low-grade metasedimentary rocks over a crystalline core that is intermediate to basic in composition. Short-wavelength magnetic anomaly highs along the upper ridge flanks and crest may denote the presence of shallow igneous rocks. Because of the uncertain component of ice-rafted material, seafloor sediments recovered from the ridge by shallow sampling techniques cannot be clearly related to ridge basement lithology without further detailed analysis. The ridge is cut at the surface and at depth by normal faults that appear related to the development of the Makarov Basin. This and other data are consistent with the idea that the Makarov Basin was formed by continental stretching rather than simple seafloor spreading. Hence the flanking Alpha and Lomonosov ridges may originally have been part of the same continental block. It is suggested that in Late Cretaceous time this block was sheared from Eurasia along a trans-Arctic left-lateral offset that may have been associated with the opening of Baffin Bay. The continental block was later separated from Eurasia when the North Altantic rift extended into the Arctic region in the Early Tertiary. The data suggest that the Makarov Basin did not form before the onset of rifting in the Artic.  相似文献   

14.
The integration of information obtained from onshore and offshore geological and geophysical research undertaken in the context of the International Polar Year has led to the following results. The continental crust is widespread in the Arctic not only beneath the shelves of polar seas in the framework of the Amerasia Basin but also in the Chukchi-Northwind, Lomonosov, and Mendeleev ridges; a combination of continental and oceanic crusts is inferred in the Alpha Ridge. The Amerasia Basin is not an indivisible element of the Arctic Ocean either in genetic or structural terms but consists of variously oriented basins different in age. The first, Mesozoic “minor ocean” of the Arctic Ocean—the Canada Basin—arose as a result of impact of the Arctic plume on the high-latitude region of Pangea. This inference is supported by the vast Central Arctic igneous province that comprises the Jurassic-Mid-Cretaceous within-plate and ocean-island basaltic and associated rocks. The rotational mechanism of opening of this basin is explained by the slant path of the plume head motion, which resulted in breaking-off and displacement of a fragment of Pangea. The effect of the Arctic plume was expressed during all stages of the opening of the Canada Basin and exerted effects on the adjacent part of the Eurasian continent during the formation of the Verkhoyansk-Chukotka tectonic domain. The Canada Basin was an element of the segmented system of Atlantic spreading ridges, while the Arctic plume that initiated its evolution was genetically related to the episodically acting African-Atlantic superplume. In comparison with the Pacific superplume, the low productivity of African-Atlantic lower mantle upwelling became the cause of slow and ultraslow spreading in the Atlantic and Arctic oceans and determined the passive character of their margins, including the Canada Basin.  相似文献   

15.
四川盆地北部剑阁古隆起的厘定及其基本特征   总被引:1,自引:0,他引:1  
孙衍鹏  何登发 《地质学报》2013,87(5):609-620
古隆起成因机制及其演化的分析,可为探讨大陆陆内构造变形提供基础,古隆起也是重要油气勘探领域之一.地震剖面、钻井资料和野外露头等证据揭示,四川盆地北部须家河组上部地层缺失并非周边造山作用剥蚀形成,而是古隆起活动造成,本文称之为剑阁古隆起,对其进行厘定和描述.通过分析地震剖面和连井剖面的年代地层格架,并结合Bischke曲线分析法,确定古隆起的形成与演化历史.结合区域构造背景,分析古隆起成因.剑阁古隆起相对高部位的边界近似为须家河组缺失尖灭线,分布在江油—剑阁—广元—旺苍一带.它于晚三叠世须三期开始形成,主要发育期为须四期到须六期,持续到早侏罗世后衰亡,经历了一个完整的形成—演化—衰亡的隆起旋回,持续大约21 Ma,造成约350 m的地层沉积间断,后期改造使古隆起初始形态不复存在.剑阁古隆起的形成受控于勉略洋盆的关闭,大地构造位置属于晚三叠世扬子地块北缘前陆盆地的前隆部分,它的发现对分析扬子地块北缘构造演化和川北地区须家河组油气勘探具有重要意义.  相似文献   

16.
跳出南海看南海——新特提斯洋闭合与南海的形成演化   总被引:6,自引:5,他引:1  
本文总结了笔者参与基金委重大研究计划"南海深海过程演变"的研究成果。我们发现南海和青藏高原都是新特提斯洋闭合的产物,而非前人所说的南海是由青藏高原碰撞导致的中南半岛逃逸所形成。与青藏高原碰撞隆升机制不同,南海是新特提斯闭合后期弧后拉张的结果。新特提斯洋位于北边的欧亚大陆与南面的非洲、印度和澳大利亚板块之间,呈东宽西窄的喇叭型。在西部,新特提斯洋向北的俯冲可能在侏罗纪就开始了,局部形成了弧后盆。约130Ma前,由于凯尔盖朗等大火成岩省的喷发,新特提斯洋脊也开始向北漂移。由于新特提斯洋东部宽度较大,弧后拉张明显,形成了古南海。新特提斯洋闭合过程中一个重大事件是洋脊俯冲:从菲律宾经福建及两广到青藏高原,均有100Ma左右的埃达克岩产出,是洋脊俯冲的产物。其中,菲律宾、福建、广东埃达克岩形成了斑岩铜金矿床;而在青藏高原,埃达克岩虽有矿化,但没有形成大规模的斑岩铜金矿床。同时期,华南出现了一次短暂的大规模挤压事件,与洋脊俯冲契合。这次挤压事件可能导致了古南海闭合的开始。与此同时,青藏高原冈底斯出现高温岩石——埃达克质紫苏花岗岩;其北面有~110Ma短时间内发生的大规模花岗岩事件。考虑到板块重建的结果,这些埃达克岩和华南短时间挤压事件的时空分布显示新特提斯洋脊在约100~110Ma,近似平行于俯冲带俯冲到了欧亚大陆之下;其前片下沉,扰动软流圈,形成大规模岩浆活动;后片则缓慢后撤,于~80Ma形成了A-型花岗岩。这些A-型花岗岩多属于A2型,受到了还原性板块俯冲的影响而普遍含锡,形成了全球60%的锡矿。俯冲板片的后撤,导致了拉张,可以合理解释南海北缘的"神狐运动"。随着俯冲板片后撤,俯冲角度加大,形成新的弧后拉张,于~33Ma出现洋壳,形成了南海。青藏高原碰撞引起的物质向东、南、北等各方向逃逸,对东亚大陆的构造格局也产生了重要的影响,但是并非南海拉张的主要控制因素。到~23Ma时,东经九十度海岭的俯冲阻挡了青藏高原下方地幔物质向东南方向逃逸,改变了东亚构造格局。同时,由于该海岭俯冲产生的向北东方向的挤压,造成印支半岛向西南挠曲,导致南海洋脊产生向南的跃迁。  相似文献   

17.
祁漫塔格造山带——青藏高原北部地壳演化窥探   总被引:2,自引:0,他引:2  
祁漫塔格是东昆仑造山带的一个分支,位于青藏高原中北部,夹持于柴达木盆地和库木库里盆地中间,向西被阿尔金走滑断裂错段。从元古代到早中生代,由于受到多期、多阶段大洋俯冲和关闭影响,导致不同地体间发生碰撞拼贴和大陆增生过程,并由此引发一系列的岩浆事件。祁漫塔格造山带内发育新元古代花岗岩(1000~820 Ma)是对Rodinia超大陆形成的响应。以阿达滩和白干湖逆冲断裂为界,划分为南、北祁漫塔格两地体。北祁漫塔格地体作为活动大陆边缘,发育大量的早古生代与俯冲有关的花岗岩和VA型蛇绿岩;南祁漫塔格地体最初为洋内俯冲形成的原始大洋岛弧,发育早古生代SSZ型蛇绿岩、岛弧拉斑玄武岩和钙碱性火山岩。随着持续俯冲,年轻岛弧伴伴随地壳加厚转变为成熟岛弧。南、北祁漫塔格地体间的碰撞(弧-陆碰撞)可能发生在晚志留世(422Ma),并持续到早泥盆世(398Ma)。在此期间(422~389Ma),南祁漫塔格地体内发育一系列同碰撞型花岗岩;北祁漫塔格地体内发育一系列的大洋岛弧花岗岩。南祁漫塔格作为外来地体,碰撞拼贴对于大陆边缘、大陆增生意义重大。之后,南、北祁漫塔格地体进入后碰撞环境并发育一系列板内花岗岩。此外,伸展导致造山带垮塌,发育中泥盆统磨拉石建造。碰撞使得海沟后退,海沟阻塞导致俯冲减弱甚至停止,因而产生了石炭-二叠纪(357~251 Ma)岩浆活动缺口。古特提斯祁漫塔格洋的最终关闭可能始于晚二叠世,使得库木库里微板块拼贴于大陆边缘;碰撞抬升导致缺失上二叠统-中三叠统地层。早中三叠世(251~237 Ma)由于碰撞,俯冲大洋板片回转,之后断离,软流圈地幔物质沿岩石圈地幔通道上涌,使得新生下地壳部分熔融;到了晚三叠世,大规模岩石圈地幔和下地壳物质拆沉,导致古老地壳物质发生熔融,形成了一系列后碰撞背景下的钙碱性和碱性花岗岩。  相似文献   

18.
本文在综合东北印度洋域5支深海钻芯和7支活塞柱状芯资料的基础上,对该区沉积作用及其形成的记录与北部山脉和高原隆升的关系进行讨论.过去有关深海记录对造山带构造活动响应的研究多集中于孟加拉浊积扇,而90°E海岭的远洋沉积记录通过海气相互作用系统作为中介,可能包含响应隆升的重大环境信号.初步研究表明,远洋记录中的碳酸盐含量、有孔虫的形态结构和若干微量元素特征的剧变期与已知的高原构造阶段存在密切的对应关系,其中,距今8Ma、3.7Ma、0.8Ma和0.16Ma所反映的变化尤为突出.  相似文献   

19.
We have analyzed the geodynamic evolution of the lithosphere and upper mantle of the Amerasian basin based on the stress-strain state simulation. It is shown that the asthenospheric spreading in the return upflow region of the mantle convection, results in formation of two local uplifts, which can be interpreted as Lomonosov Ridge and Mendeleev/Alfa Ridge. The further long-term action of the mantle convection leads to formation of Makarov and Podvodnikov Basins.  相似文献   

20.
The sedimentation and ore formation were studied in sediments from nine stations located in the 24°W profile in the Brazil Basin of the Atlantic Ocean. The sediments are represented by mio- and hemipelagic muds, which are variably enriched in hydrothermal iron and manganese oxyhydroxides. As compared to the sediments from other basins of the Atlantic Ocean, these rocks are marked by extremely high manganese contents (up to 1.33%) and maximal enrichment in Ce. It was shown that the positive Ce anomaly is related to the REE accumulation on iron oxyhydroxides. Influence of hydrothermal source leads to the decrease of Ce anomaly and LREE/HREE ratio. In the reduced sediments, preservation of positive Ce anomaly and/or its disappearance was observed after iron and manganese reduction. The REE contents were determined for the first time in the Ethmodiscus oozes of the Brazil Basin. Ore deposits of the Brazil Basin are represented by ferromanganese crust and ferromanganese nodules. Judging from the contents of iron, manganese, rare, and trace elements, these formations are ascribed to the sedimentation (hydrogenic) deposits. They are characterized by a notable positive Ce anomaly in the REE pattern. The extremely high Ce content (up to 96% of total REE) was discovered for the first time in the buried nodules (Mn/Fe = 0.88).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号