首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pulang (普朗) porphyry copper deposit, located in the southern segment of the Yidun-Zhongdian (义敦-为中甸) island arc ore-forming belt of the Tethys-Himalaya ore-forming domain, is a recently discovered large copper deposit. Compared with the composition of granodiorite in China, the porphyry rocks in this area are enriched in W, Mo, Cu, Au, As, Sb, F, V, and Na2O (K1≥1.2). Compared with the composition of fresh porphyry rocks in this district, the mineralized rocks are enriched in Cn, Au, Ag, Mo, Pb, Zn, W, As, Sb, and K2O (K≥1.2). Some elements show clear anomalies, such as Zn, Ag, Cu, Au, W, and Mo, and can be regarded as pathfinders for prospecting new ore bodies in depth. It has been inferred from factor analysis that the Pulang porphyry copper deposit may have undergone the multiple stages of alteration and mineralization: (a) Cu-Au mineralization; (b) W-Mo mineralization; and (c) silicification and potassic metasomatism in the whole ore-forming process. A detailed zonation sequence of indicator elements is obtained using the variability index of indicator elements as follows: Zn→Ag→Cu→Au→W→Mo. According to this zonation, an index such as (Ag×Zn) D/(Mo×W) D can be constructed and regarded as a significant criterion for predicting the Cu potential at a particular depth.  相似文献   

2.
Systematic geochemical studies of the Proterozoic Lengjiaxi Group in northeastern Hunan Province suggest that the Lengjiaxi Group is a Au-As-Sb-W association-type Au-bearing turbidite formation.The contents of Au,As,Sb,W,Cr,Mn,Pb and Zn in the turbidite formation are more than two times as high as the average contents of trace elements in the upper continental crust.The low abundance of Ag and the close correlation between Au and As are two important characteristic features.In the Au-bearing turbidite formation the enrichment of gold is due to the extensive occurrence of Au-bearing pyrites.Higher contents of Au,W,Sb and Ag in the greywacke indicate that they also exist in the form of heavy minerals.Au,Ag,As,Sb,W and REE in the Au-bearing turbidite formation have a close genetic relation with the chemistry of the gold deposits.  相似文献   

3.
The Berezitovoe deposit is a large-sized Au-Ag-Zn-Pb deposit in the east of the SelengaStanovoi superterrane, Russia. Au-Ag orebodies are hosted by tourmaline-garnet-quartz-muscovite metasomatic rocks; Zn-Pb orebodies are hosted by granodiorites, porphyritic granites and tourmalinegarnet-quartz-muscovite metasomatic rocks. These orebodies are surrounded by wall rocks dominated by the Tukuringra Complex granodiorites, porphyritic granites, and gneissic granodiorites. The alteration includes silicification and garnet, sericitization chloritization, carbonatization and kaollinization. LA-ICP-MS U-Pb zircon dating indicates that the gold mineralization can be divided into two stages in the Berezitovoe polymetallic gold deposit(at 363.5 ± 1.5 Ma, and133.4± 0.5).Hornblende-plagioclase gneisses of the Mogocha Group in the study area underwent Paleoproterozoic metamorphism(at 1870 ± 7.8 and 2400 ± 13 Ma), gneissic granodiorite of the Tukuringra Complex yields a late Paleozoic magmatic age(at 379.2 ± 1.1 Ma),and subalkaline porphyritic granitoid of the Amudzhikan Complex yield late Mesozoic magmatic ages(133-139 and 150-163 Ma). Granodiorites of the Tukuringra Complex in the study area have high concentrations of SiO_2(average of 60.9 wt%), are aluminum-oversaturated(average A/CNK of 1.49), are enriched in the large ion lithophile elements(e.g.,K, Rb, and Ba), U, Th, and Pb, are depleted in high field strength elements(e.g., Ta, Nb, and Ti), and have slightly negative Eu and no Ce anomalies in chondrite-normalized rare earth element diagrams.Fluid inclusions from quartz veins include three types: aqueous two-phase, CO_2-bearing three-phase,and pure CO_2. Aqueous two-phase inclusions homogenize at 167℃-249℃ and have salinities of 4.32%-9.47% NaCl equivalent, densities of 0.86-0.95 g/cm~3, and formed at depths of 0.52-0.94 km. In comparison, the C0_2-bearing three-phase inclusions have homogenization temperatures of 265℃-346℃,salinities of 7.14%-11.57% NaCl equivalent, and total densities of 0.62-0.67 g/cm~3. The geochemical and zircon U-Pb data and the regional tectonic evolution of the study area, show that the Berezitovoe polymetallic gold deposit formed in an island arc or active continental margin setting, most probably related to late Paleozoic subduction of Okhotsk Ocean crust beneath the Siberian Plate.  相似文献   

4.
The Dajing Cu-Sn-polymetallic ore deposit is famous for its large scale, abundant associated elements, narrow and closely-spaced development of ore veins and high grade, but exploration within the mining district and its deeper parts has revealed no Yanshanian rockbody. Therefore, there have been proposed a diversity of hypotheses on the genesis of the deposit. The authors, from the angle of mantle-branch structure, provided evidence showing that the mining district is located in the core of the Da Hinggan Ling mantle-branch structure, the multi-stage evolution of mantle plume paved the way for the ascending of deep-source ore fluids and these fluids extracted part of the ore-forming materials. Then, these ore-forming materials were concentrated in the favorable structural loci (e.g. structural fissures) to form ores. The orientation of ore-forming and ore-controlling fissures is closely related to the regionally structural stress field at the metallogenic stage. The zonation of Sn, Cu, Au, Ag, Pb, and Zn within the mining district appears to be related to metallogenesis and the crystallization temperature of ore-forming materials. Mineralization of Sn, Cu, Au, etc. which require relatively high crystallization temperature and pressure is in most cases recognized in the central part of the mining district, while that of Ag, Pb, Zn, etc. which require relatively low crystallization temperature and pressure is, for the most part, produced in the periphery of the mining district.  相似文献   

5.
Geochemical data of altered wall rocks are important for the metallogenic prognosis of hydrothermal gold deposits. Indicator elements of altered wall rocks such as K, Al, As, Sb, and Hg have been successfully used to assess gold anomalies in lithogeochemical survey. However, such researches have rarely been done in stream sediment survey for the exploration of gold from various landscapes. On the basis of the geochemical analysis of altered wall rocks of gold deposits in the cold desert areas of Gansu (甘肃) Province in Northwest China, it is found that the combination of Al, K, and Sn could serve as an important indicator of hydrothermal gold deposits and can be used to evaluate the metallogenic prospective of gold anomalies in stream sediments. More studies performed in the cold grassland areas and the moderate-low relief mountainous areas showed that, both weak and strong geochemical anomalies can be extracted, if strictly abiding by the ways of calculation and addition of the binary values of the indicator elements with equal weight, and this provides the sound delineation of metallogenic perspective areas.  相似文献   

6.
Auriferous cherts in the Middle Carboniferous Jinchang Formation are the dominant host rocks of auriferous quartz veins and mixed orebodies comprised of gold-bearing quartz veins and cherts in the Mojiang gold deposit.The rocks exhibit sedimentary texture and structure and are composed of hot-water deposited minerals.The FeO,Fe2O3,Au and Ag contents of the auriferous cherts are high;the Cr,Ni and Co contents are also high but significantly variable;MnO/TiO2 and TFe/TiO2 ratios are relatively higy.As viewed from a few diagrams that distinguish different chert formations,the auriferous cherts are in or near the range of hot-water deposited cherts.Because the correlation coefficients between Au contents and those of Cr, Ni of the rocks are negative,a great Au amount in the cherts might not be brought about by later hydrothermal alterations.The rare-earth elements,O and Si isotopic compositions of the auriferous cherts demonstrate that the cherts belong to hot-water deposited rocks.The later hydrothermal alterations made the petrochemical compositions of the cherts deviate from the characteristics of hot-water deposition.In general,the geological and geochemical features of the auriferous cherts demonstrate that the rocks were formed by hot water deposition.  相似文献   

7.
The xenoliths in host rocks of hydrothermal gold deposits can generally provide much geochemical information of the deep rocks, which may have an implication for the sources of ore-forming materials. Geochronology and geochemical characteristics are reported for a granite xenolith, which is enclosed by the lamprophyre in the Zhenyuan gold deposit (Yunnan Province, SW China). This granite xenolith mainly consists of K-feldspar, quartz, and plagioclase with trace amounts of magnetite, titanite, apatite, zircon, and sulfides. Zircons from the granite xenolith yield a weighted average U-Pb age of 281.1 ± 1.3 Ma (MSWD = 2.1), which could represent the crystallization age of this granite xenolith. The Ti-in-zircon geothermometer and the Mn concentration in apatite calculate that this granite xenolith formed at 685 ± 43°C with the logfO2 values ranging from NNO + 3.7 to NNO + 6.4. The zircons in the granite xenolith have a restricted range of positive εHf(t) values ranging from +9.4 to +10.8, and the corresponding Hf TDM2 model ages range from 588 to 678 Ma. The zircon U-Pb age and the Hf isotopic compositions indicate this granite xenolith within the lamprophyre is mainly derived from partial melting of juvenile crustal rocks before the completed closure of the Ailaoshan Ocean. The pyrites in the granite xenolith have higher Bi concentrations, and lower As, Sb, and Tl concentrations than the gold-bearing pyrites of the ores in the Zhenyuan gold deposit. The low Au concentrations of the pyrites together with the ore-forming age of the Zhenyuan gold deposit (Oligocene) indicate the granite xenolith may have limited contribution to the gold mineralization of the Zhenyuan gold deposit.  相似文献   

8.
A suite of elements(Ag,Au,Ba,Bi,Cd,Co,Cr,Cu,Ga,Hf,Hg,Mn,Mo,Ni,Pb,Rb,Sb,Se, Sr,Te and Zn),total organic carbon(TOC)and pH were analyzed in stream sediment and tailing samples from Um Shashoba area,in order to evaluate Au placer and the sediments being impacted by old mining activities.Analytical results were examined using statistical,graphical and mapping methods.In spite of the results revealing that Au and most of the elements in sediments were in general significantly lower than those in tailing,Au wa...  相似文献   

9.
Geochemical characteristics of the Chagande’ersi molybdenum deposit in Inner Mongolia and its genesis were analyzed in this study using rock mineralography and rock geochemical testing. The mineralized country rocks of the Chagande’ersi molybdenum deposit consist mainly of medium-to fine-grained monzogranite,medium-to fine-grained rich-K granite,with minor fine-grained K-feldspar granite veins and quartz veins.The rocks are characterized by high silica,rich alkali,high potassium,which are favorable factors for molybdenum mineralization.The rocks have the Rittmann index ranging from 1.329 to 1.961,an average Na2O+K2O value of 7.41,and Al2O3/(CaO+Na2O+K2O)>1,suggesting that the rocks belong to the high-K calc-alkaline peraluminous granite.The typical rock samples are enriched in Rb,Th,K and light rare earth elements,depleted in Sr,Ba,Nb,P and Ti, and these features are similar to that of the melt granite resulting from collision of plate margins.TheδEu of the rocks falls the zone between the crust granite and crust-mantle granite,and are close to that of the crust granite;(La/Lu)N indicates the formation environment of granite is a continental margin setting.The Nb/Ta ratios are close to that of the average crust(10);the Zr/Hf ratios of monzogranite are partly below the mean mantle(34-60),while the Zr/Hf ratio of K-feldspar granite are close to the mean value in the crust.Comprehensive analyses show that the granite in this area formed during the transition period between tectonic collision and post-collision.During the plate collision and orogeny,the crust and mantle material were mixed physically,remelting into lava and then crystal fractionation,finally gave rise to the formation of the rock body in this area.This has close spatial and temporal relation with the molybdenum mineralization.  相似文献   

10.
The Yindongzi-Daxigou strata-bound barite-siderite,silver-polymetallic deposits discovered in the Qinling orogen are hosted within flysch facies in a deep-water fault-controlled basin on the passive northern margin of the Qinling microplate.The orebodies occur in a series of hydrothermal depositonal rocks.Mineralization zoning is characterized by Fe-Ba←Ba-Cu←Pb-Ab→Cu-Ag→Pb→Au.This is obviously a gradational transition mineralization from ventproximal mineralization to more distal mineralization.In this gradational transition between Chefanggou and Yindongzi,vent-proximal mineralization consists of silver-polymetallic orebodies(Pb-Ag),which is the center of hydrothermal mineralization.The Chefanggou Ba-Cu ore district in the west and the Yindongzi Cu-Ag ore district in the east represent vent lateral mineralization.Distal mineralization in the west is represented by the Daxigou Fe-Ba ore district while distal mineralization in te east is represented by the Pb ore district.Thick massive,laminated barren albite chert and jasperite,sometimes with minor silver-ploymetallic mineralization of commercial importance,and pyritization in rocks feature more distal mineralization.Geochemical anomalies of Au-As associations are found in ankerite phyllite and muddy sandstone.Actually,Au deposits are dominantly controlled by the late brittle-ductile shear zone.  相似文献   

11.
The Yaojialing deposit is the first large-scale Zn–Au–Cu polymetallic skarn deposit located in the Shatanjiao ore field of the Tongling area in the Middle–Lower Yangtze belt. It has distinct metallogenic characteristics and is clearly different from the known skarn Cu–Au deposits in the Tongling area and the Middle–Lower Yangtze belt. Previous studies of the Yaojialing deposit have included rock geochemistry, alteration and mineralization characteristics, as well as metallogenesis and metallogenic models. However, there are still numerous problems concerning the coexistence of multiple elements, metallogenetic specialization of the magma and the metallogenic model. In this study, using the latest production exploration work on the deposit, we investigated the Yaojialing deposit including its geological characteristics, petrography, LA–ICP MS zircon U–Pb dating and whole rock geochemistry. Two kinds of magmatic rocks have been distinguished for the first time in the deposit, amongst which the granodiorite porphyry exposed on the surface of the mining area, which is the host rock of the veined lead–zinc ore body, is the wall-rock intrusion; and the deep concealed quartz monzonite porphyry is the causative intrusion, the distribution of orebodies and wall-rock alteration characteristics showing regular zoning around the quartz monzonite porphyry. The 206Pb/238U weighted average age of the granodiorite porphyry is 140.2 ± 1.0 Ma (MSWD = 0.85, n = 13) by LA–ICP MS zircon U–Pb dating, while the quartz monzonite porphyry is 138.9 ± 1.2 Ma (MSWD = 0.60, n = 16), which is consistent with petrographic evidence. The geochemical characteristics show that the quartz monzonite porphyry is a high-K calc-alkaline series peraluminous rock. The trace element characteristics show that the quartz monzonite porphyry is enriched in LILE such as K, Rb, Sr, Ba and LREE, yet depleted in HFSE such as Nb, Ta, P and Ti. The Yaojialing deposit shows the mineralization characteristics of proximal skarn and distal skarn, having the common characteristics of ‘multi-storey’ and ‘Trinity’ metallogenic models.  相似文献   

12.
The Takab area in NW of Iran is an important gold mineralized region with a long history of gold mining. In this study ASTER data is used to evaluate environmental effects of gold mining. The results show that mining activities have resulted in release of potentially toxic metals (PTMs) in the area. Principal component analysis (PCA) of ASTER data is used to map sources of PTMs and their secondary hosts (iron oxides) through alteration mapping. The results show that selective PCA is a robust yet time consuming technique for alteration mapping. A color composite is created for finding common hydrothermally altered rocks. The created color composite successfully mapped the known deposits and anomalous areas identified by geological survey of Iran. Because of the low spatial resolution of ASTER sensor, the iron oxide mapping is restricted to the wider portions of the streams. Spectral analyses confirm the presence of hematite and goethite in stream sediments. This is in accordance with measured pH values.  相似文献   

13.
Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao–Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.  相似文献   

14.
The Middle Proterozoic Jiuling Group,one of the most important geologic unit in the Northwest Jiangxi Terrain,is a kind of Au-bearing formation with a Au-Ag-As association,and its geotectonic setting belongs to the ACM area.Granitification can supply Au with favorable complexing agents.Later granitification os of much more significance in mineralization.Regional Aumineralization includes two types;metamorphic hydrothermal solo-Au mineralization in the northern part and magma gydrothermal superimposed polymetallic mineralization with Au,Ag,etc,being dominant in the southern part.Regional exploration should center aroud the Jiujing Group,small granite bodies of later periods and fault structures,while paying attention to the anomalies of trace elements such as Au,Ag,As,Pb,Zn,etc.  相似文献   

15.
In the 1990s, some median-large gold deposits have been discovered in several lead-zinc metalloge-netic belts (e.g. the Qinling lead-zinc metallogenetic belt, Shanxi Province and Gansu Province and the Qingchengzi lead-zinc ore field, Liaoning Province) in China. Gold deposits and lead-zinc deposits spatially co-exist in the same tectonic setting; lead-zinc orebodies are commonly located below gold ore bodies. The host rocks of lead-zinc ore-bodies are conformably overlain by those of gold ore bodies. The age of gold mineralization is obviously younger than that of lead-zinc mineralization. Preliminary geochemical research has demonstrated the following: lead-zinc mineralization took place in a marine sedimentary-exhalative system, which had the characteristics of a high fluid/rock ratio, a high salinity and a high halide activity; meanwhile, most of gold was transported into the low-temperature hydrothermal plume and primarily enriched in sediments. During later (magmatism-) metamorphism-tectonism, gol  相似文献   

16.
The Xiaoban gold deposit is a large-size deposit recently found in middle area of Fujian Province. It belongs to magmatic hydrothermal type occurred in Mayuan Group metamorphic rocks of Middle Proterozoic and is controlled by low angle fault (detachment) structures. The contents of Au in Mayuan Group metamorphic rocks, Caledonian-Indosinian deformed granite and early Yanshanian granite are higher with Au enrichment coefficient of 2.06-5.68, 5.11 and 6.67 than those in other geological bodies. And the higher enrichment coefficients (>2) of Ag, S, Sn and Te are similar to those of gold ore. Meanwhile, the distribution of Au in Mayuan Group metamorphic rocks and early Yanshanian granite with a low D-value (0.58 and 0.67) is favorable to gold mineralization. REE characteristics of gold ore, ratios of (LREE/HREE), (La/Sm)n, (Yb/Lu)n, (La/Tb)n and (Sm/Nd)n are similar to Mayuan Group metamorphic rocks, only non or little normal Eu abnormal of ore is dissimilar to metamorphic rocks. The δ(34S) of the gold ore, with a high homogenization, is (-4.7×10-3)-(-2.7×10-3). The study of inclusion indicates 180-249 ℃ of mineralization temperature, 3.69 %-11.81 % of salinities and 0.869-0.991 g/cm3 of densities of mineralization fluid. Based on hydrogen and oxygen isotope (δ(18O)=11.0×10-3-11.7×10-3, δ(D)=(-48×10-3)-(-62×10-3)) and initial w(87Sr)/w(86Sr) =0.715,combining to the analysis of geological history, regional metamorphism and magamtic activity, the authors confirm that the source for the ore fluid was mainly from magmatic, partly from metamorphic water, and with a little influence of meteoric water. Isotopic dating made on Rb-Sr isochron age of 182 Ma, by using alteration minerals of gold-ores from the deposit, indicates that the mineralization occurs in early Yanshanian epoch. This is close to the age of 187 Ma of the Anchun magmatite with a similar alteration and gold mineralization to the Xiaoban gold deposit. The age of early Yanshanian epoch of the Xiaoban gold is indentical with the characteristics of southern China gold metallogenic belt and the geotectonic evolution of the transition from paleo-Asian system and paleo-Tethyan system to paleo-Pacific active continental margin in eastern Asia.  相似文献   

17.
The Sanshandao Au deposit is located in the famous Sanshandao metallogenic belt, Jiaodong area. To date, accumulative Au resources of 1000 t have been identified from the belt. Sanshandao is a world-class gold deposit with Au mineralization hosted in Early Cretaceous Guojialing-type granites. Thus, studies on the genesis and ore-forming element sources of the Sanshandao Au deposit are crucial. He and Ar isotopic analyses of fluid inclusions from pyrite(the carrier of Au) indicate that the fluid inclusions have 3 He/4 He=0.043–0.21 Ra with an average of 0.096 Ra and 40 Ar/36 Ar=488–664 with an average of 570.8. These values represent the initial He and Ar isotopic compositions of ore-forming fluids for trapped fluid inclusions. The comparison of H–O isotopic characteristics combined with deposit geology and wall rock alteration reveals that the ore-forming fluids of the Sanshandao Au deposit show mixed crust–mantle origin characteristics, and they mainly comprise crust-derived fluid mixed with minor mantle-derived fluid and meteoric water during the uprising process. The ore-forming elements were generally sourced from pre-Cambrian meta-basement rocks formed by Mesozoic reactivation and mixed with minor shallow crustal and mantle components.  相似文献   

18.
Shear zone-hosted gold deposits in China can be divided into four types:ductile,brittle-ductile,ductile-brittle and brittle,of which the ductile and brittle types are the basic ones.All these types of gold deposits have their own geochemical characteristics.The Hetai gold deposit in Guangdong Province,for example,is a mylonite-type gold deposit in a ductile shear zone.With increasing mylonitization,obvious changes took place in trace elements in minerals and rocks,enriching gold and mineralizing elements.The S and Pb isotope data indicated that the ore-forming materials were derived from the strata.Hydrogen and oxygen isotopic and fluid inclusion studies also implied that the ore-forming fluid was much closer to meteoric water from the early to the late ore-forming stage.The Linglong gold deposit,Shangdong Province,is a quartz-type gold deposit in a brittle shear zone.Changes in rocks,minerals and trace elements occurred in the process of f ormation of gold quartz veins,and the analytical results of S,Pb ,Hand O isotopes showed that ore deposition is connected not only with the Jiaodong Group,but also with anatexic granites.  相似文献   

19.
Calc-alkaline granites (excluding A-and M-type) could be divided into two petrogenic series,I,e,the syntexis series and the transformation series according to their genetic mechanisms.In the light of this classification we found that granites of these two series often aligne in paired zones parallel to contemporaneous B-type or intracontinental compression-subduction zones within ascended slabs,re-sulting in a regular zonal pattern together with subduction zones.Thus,they are defined as twin granite belts.According to the spatial relations between the granite belts and the subduction zones,the twin granite belts could be classified as A, AB and B-type .The zonation of granites of the two series in the northern part of the East Qinlin area could be cited as a typical example of A-type twin granite belts related to the Yenshanian intracontinenta compression-subduction movement in the area.In this paper the tectonic settings and petrogenic features of the twin granites belts in East Qinlin are systematically described,and a tectonic model for granitic magma genesis in intracontinental compression-subduction environments has been proposed.In this model the forma-tion of A-type twin granite belts is closely connected with tectonic movements in terms of the prince-ple,rule and dynamics of material differentiation in the lithosphere.  相似文献   

20.
Lead isotopes have been widely applied in geochemical exploration and evaluation of ore deposits, as well as in ascertaining the age of mineralization and the source of ore fluids.Long-term practice showed that the method of lead isotope targeting is somewhat efficient for macroscopic evaluation of forecasting areas, but not powerful enough for for ecasting concealed orebodies. As the contents of U and the variation of U/Pb ratio sharply decrease with depth in the lithosphere, U-Th-Pb isotopic differentiation must have occurred during the crust-mantle e-volution. Lead isotopic ratios show a wide variation range, varying in the front of mineralizationand shallow-derived ores, but maintaining very stable in the major orebody and being usuallyclose to the average isotopic composition of the crust and mantle of the continent block fromwhich the ores were derived. Therefore, the lead isotopic composition can serve as a measure for identifying the position of mineralization. The lead isotope geochemistry was applied to the ex-ploration and evaluation of the Baoban gold deposits of Hainan Province, China. The an alyticalresults of ore veins and adjacent rocks showed that there is a correlation between the lead isotopedata and the position of orebody. Based on the experience from the Baoban gold deposits and other ore deposits in Yunnan Province, an exploration principle has been established, that is,positive anomalies of lead isotope eigenvectors for prospecting deep-seated orebodies and nega-tive anomalies of eigenvectors for enlarging lateral exploration surrounding the known deposit.The ore beds in the Erjia and Beiniu mining districts should be as signed to the deep part of the orebody and those in the Tuwaishan mining district should be the shallow part, so ore beds cor-responding to those in the Erjia and Beiniu mining districts may be found in the Tuwaishan min-ing district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号