首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Campo de Dal??as, located between the central and eastern Betic Cordilleras, shows an evolution determined by the overprinting of two main stress fields since Pliocene times. The first of these develops hybrid and tensional joint sets up to Pleistocene (100 000 yr) and is characterized by NNW–SSE horizontal trend of compression and an ENE–WSW horizontal extension. The second stress field has prolate to triaxial extensional ellipsoids, also with ENE–WSW horizontal extension, and continues to be active today. The most recent stresses produce the reactivation of previous joints as faults whose trends are comprised mainly from N120°E to N170°E and have a normal and transtensional regime, with dextral or sinistral components. The palaeostress evolution of this region is similar to that undergone by other basins of the Eastern Betic Cordilleras, although the Pliocene–Pleistocene transcurrent deformations in the Campo de Dal??as only develop joints and not strike-slip faults.  相似文献   

2.
The evolution of the seismogenic process associated with the Ms 5.8 Sangro Valley earthquake of May 1984 (Abruzzo, central Italy) is closely controlled by the Quaternary extensional tectonic pattern of the area. This pattern is characterised by normal faults mainly NNW striking, whose length is controlled by pre-existing Mio–Pliocene N100±10° left-lateral strike-slip fault zones. These are partly re-activated as right-lateral normal-oblique faults under the Quaternary extensional regime and behave as transfer faults.Integration of re-located aftershocks, focal mechanisms and structural features are used to explain the divergence between the alignment of aftershocks (WSW–ENE) and the direction of seismogenic fault planes defined by the focal mechanisms (NNW–SSE) of the main shock and of the largest aftershock (Ms=5.3).The faults that appear to be involved in the seismogenic process are the NNW–SSE Barrea fault and the E–W M. Greco fault. There is field evidence of finite Quaternary deformation indicating that the normal Barrea fault re-activates the M. Greco fault as right-lateral transfer fault. No surface faulting was observed during the seismic sequence. The apparently incongruent divergence between aftershocks and nodal planes may be explained by interpreting the M. Greco fault as a barrier to the propagation of earthquake rupturing. The rupture would have nucleated on the Barrea fault, migrating along-strike towards NNW. The sharp variation in direction from the Barrea to the M. Greco fault segments would have represented a structural complexity sufficient to halt the rupture and subsequent concentration of post-seismic deformation as aftershocks around the line of intersection between the two fault planes.Fault complexities, similar to those observed in the Sangro Valley, are common features of the seismic zone of the Apennines. We suggest that the zones of interaction between NW–SE and NNW–SSE Plio-Quaternary faults and nearly E–W transfer faults, extending for several kilometres in the same way as M. Greco does, might act as barriers to the along-strike propagation of rupture processes during normal faulting earthquakes. This might have strong implications on seismic hazard, especially for the extent of the maximum magnitude expected on active faults during single rupture episodes.  相似文献   

3.
4.
Neotectonic evolution of the Central Betic Cordilleras (Southern Spain)   总被引:1,自引:0,他引:1  
Paleostress orientations were calculated from fault-slip data of 36 sites located along a traverse through the Central Betic Cordilleras (southern Spain). Heterogeneous fault sets, which are frequent in the area, have been divided into homogeneous subsets by cross-cutting relationships observed in the field and by a paleostress stratigraphy approach applied on each individual fault population. The state of stress was sorted according to main tectonic events and a new chronology is presented of the Miocene to Recent deformation in the central part of the Betic Cordilleras. The deviatoric stress tensors fall into four distinct groups that are regionally consistent and correlate with three Late Oligocene–Aquitanian to Recent major tectonic events in the Betic Cordilleras. The new chronology of the neotectonic evolution includes, from oldest to youngest, the following main tectonic phases:
(1) Late Oligocene–Aquitanian to Early Tortonian: σ1 subhorizontal N–S, partly E–W directed, σ3 subvertical; compressional structures (thrusting of nappes, large-scale folding) and strike-slip faulting in the Alborán Domain and the External Zone of the Betic Cordilleras;
(2) Early Tortonian to Pliocene–Pleistocene: σ1 subvertical, σ3 subhorizontal NW–SE, partly N–S directed or E–W-directed (radial extension); large-scale normal faulting in the Central Betic Cordilleras and in the oldest Neogene formations of the Granada Basin related to the gravitational collapse of the Betic Cordilleras and the exhumation of the intensely metamorphosed rock series of the Internal Zones, at the same time formation of the Alborán Basin and intramontane basins such as the Granada Basin;
(3) Pleistocene to Recent: (3a) σ1 subvertical, σ3 subhorizontal NE–SW with prominent normal faulting, but coevally; (3b) σ1 subhorizontal NW directed, σ3 NE–SW subhorizontal with strike-slip faulting. Extensional structures and strike-slip faulting are related to the ongoing convergence of the Eurasian and African Plates and coeval uplift of the Betic Cordilleras. Reactivation of pre-existing fractures and faults was frequently observed. Phase 3 is interpreted as periodic strike-slip and normal faulting events due to a permutation of the principal stress axes, mainly σ1 and σ2.
Keywords: Neotectonics; Paleostress; Fault-slip data; Deformation history; Betic Cordilleras  相似文献   

5.
 In the internal zones of the Betic cordilleras, extensional structures have developed from the Upper Oligocene to the present day; they are contemporaneous with compressional structures (folds and thrusts) in the external zones. From the Upper Oligocene to the Aquitanian, extension occurred in the Maláguide/Alpujárride detachment, and related structures show varying kinematics in different sectors. Younger deformations with a top-to-the-N sense of movement have affected Nevado-Filábride (ductile shear zones), Alpujárride (ductile and brittle shear zones) and Maláguide rocks (normal faults). At least from the Late Burdigalian up to the Lower Tortonian, displacements have occurred in the Alpujárride/Nevado-Filábride detachment. Deformations have been generally non-coaxial, with a top-to-the-W sense of movement. Stretching lineation trends in the Nevado-Filábride rocks curve from E to W suggesting a progressive variation of the ductile-shear-zone kinematics related to the Alpujárride/Nevado-Filábride detachment between the Aquitanian and Lower Tortonian stages. Deformations from the Lower Tortonian to the present day are normal faults, formed in extensional settings in the upper part of the crust, and folds and strike-slip faults which indicate N–S to NNW–SSE shortening directions and E–W to ENE–WSW extension directions. Received: 26 December 1995 / Accepted: 26 January 1996  相似文献   

6.
A moderate-sized (Mw  5.3) earthquake occurred in the Dead Sea basin on February 11, 2004. A rigorous seismological analysis of the main shock and numerous aftershocks suggests that seismogenic structure was a secondary, antithetic fault within the Dead Sea fault system. The main shock is well located using all available regional seismic stations, and 43 aftershocks were precisely located relative to the main shock using a double difference algorithm. The first motion, focal mechanism for this earthquake demonstrates NNW–SSE and ENE–WSW striking nodal planes, and the aftershocks distribution is consistent with the latter — indicating a right-lateral sense of displacement. This orientation and sense of shear are consistent with similarly oriented geological faults around the Dead Sea basin — these structures are likely antithetic faults within the transform system. Although moderate in size, earthquakes that occur very close to the large Dead Sea fault system warrant consideration in the earthquake hazard assessment of the region: For example, owing to the proximity to the main fault, moderate earthquakes such as this may produce static changes in Coulomb stress along the main fault.  相似文献   

7.
The Húsavík–Flatey Fault (HFF) is an oblique dextral transform fault, part of the Tjörnes Fracture Zone (TFZ), that connects the North Volcanic Zone of Iceland and the Kolbeinsey Ridge. We carry out stress inversion to reconstruct the paleostress fields and present-day stress fields along the Húsavík–Flatey Fault, analysing 2700 brittle tectonic data measured on the field and about 700 earthquake focal mechanisms calculated by the Icelandic Meteorological Office. This allows us to discuss the Latest Cenozoic finite deformations (from the tectonic data) as well as the present-day deformations (from the earthquake mechanisms). In both these cases, different tectonic groups are reconstructed and each of them includes several distinct stress states characterised by normal or strike-slip faulting. The stress states of a same tectonic group are related through stress permutations (σ1σ2 and σ2σ3 permutations as well as σ1σ3 reversals). They do not reflect separate tectonic episodes. The tectonic groups derived from the geological data and the earthquake data have striking similarity and are considered to be related. The obliquity of the Húsavík–Flatey Fault implies geometric accommodation in the transform zone, resulting mainly from a dextral transtension along an ENE–WSW trend. This overall mechanism is subject to slip partitioning into two stress states: a Húsavík–Flatey Fault-perpendicular, NE–SW trending extension and a Húsavík–Flatey Fault-parallel, NW–SE trending extension. These three regimes occur in various local tectonic successions and not as a regional definite succession of tectonic events. The largest magnitude earthquakes reveal a regional stress field tightly related to the transform motion, whereas the lowest magnitude earthquakes depend on the local stress fields. The field data also reveal an early extension trending similar to the spreading vector. The focal mechanism data do not reflect this extension, which occurred earlier in the evolution of the HFF and is interpreted as a stage of structural development dominated by the rifting process.  相似文献   

8.
We propose to explain the origin of the double trend in seismicity of the Macas swarm in the Subandean Cordillera of Cutucú (Ecuador) and characterize the corresponding active deformation of that region. For that purpose, seismological and geological data have been used, with the deployment of a temporary seismological array, with geological field observations and image processing. We found that some earthquakes are aligned on a well known NNE–SSW trend corresponding to the orientation of the nodal planes of the reverse focal mechanism of the Mw=7.0 1995 Macas earthquake as for its aftershocks. Nevertheless, many smaller events are aligned on an unexpected NNW–SSE trend inside the Cutucú Cordillera. We interpret these two orientations of the Macas swarm as linked to Subandean basement thrusts inherited from the inversion tectonics of a NNE–SSW trending Triassic–Jurassic rift, which has been uplifted and partly extruded in the Cutucú Cordillera. The present partitioning of this part of the Subandean deformation is controlled by pre-existing NNE–SSW to NNW–SSE Triassic–Jurassic normal faults that have been subsequently compressed–transpressed and reactivated into reverse faults. Major boundary faults of the rift were NNE–SSW oriented and correspond now to some main Subandean thrusts as confirms the focal mechanism of the 1995 main shock located on the eastern border (Morona frontal thrust) and the orientation of its aftershocks. In the Cutucú Cordillera, the double orientation of present swarm can be interpreted as the result of accommodation of deformation along NNW–SSE pre-existing faults inside the inverted rift system, linked to the motion of the Morona frontal NNE–SSW thrust.  相似文献   

9.
The NW—SE trending segments of the California coastline from Point Arena to Point Conception (500 km) and from Los Angeles to San Diego (200 km) generally parallel major right-lateral strike-slip fault systems. Minor vertical crustal movements associated with the dominant horizontal displacements along these fault systems are recorded in local sedimentary basins and slightly deformed marine terraces. Typical maximum uplift rates during Late Quaternary time are about 0.3 m/ka, based on U-series ages of corals and amino-acid age estimates of fossil mollusks from the lowest emergent terraces.In contrast, the E–W-trending segments of the California coastline between Point Conception and Los Angeles (200 km) parallel predominantly northward-dipping thrust and high-angle reverse faults of the western Transverse Ranges. Along this coast, marine terraces display significantly greater vertical deformation. Amino-acid age estimates of mollusks from elevated marine terraces along the Ventura—Santa Barbara coast imply anomalously high uplift rates of between 1 and 6 m/ka over the past 40 to 100 ka. The deduced rate of terrace uplift decreases from Ventura to Los Angeles, conforming with a similar trend observed by others in contemporary geodetic data.The more rapid rates of terrace uplift in the western Transverse Ranges reflect N—S crustal shortening that is probably a local accommodation of the dominant right-lateral shear strain along coastal California.  相似文献   

10.
The geometry of tectonic structures, attributed to the Neogene–Quaternary time interval, is described in the active setting of the Venezuelan Andes. Our methodology is based on the analysis of radar satellite and Digital Elevation Model imagery, complemented by structural fieldwork and the compilation of seismotectonic data to make a structural analysis on a regional scale. Radar images provide first class data for morphostructural analysis in areas of dense vegetation and frequent cloud covering, like the Venezuelan Andes. We focused our analysis in the Burbusay–Río Momboy and Boconó faults corner located in the central part of the belt.We have described three stages of deformation during the Neogene–Quaternary. The first one, Mio-Pliocene in age, is a NW–SE compression responsible for the uplift of the Venezuelan Andes. The second tectonic stage corresponds to a strike-slip regime of deformation marked by shearing along the Boconó, Burbusay and Valera faults, which separates two triangular wedges in the larger Trujillo block. This strike-slip faulting-dominated compressional-extensional tectonic regime allowed the Trujillo crustal block to move towards the NE. Wrenching has therefore started at some point between the Pliocene and the Quaternary. These two tectonic events are consistent with ongoing strain partitioning in the Venezuelan Andes. The third stage corresponds to extensional deformation limited to the Trujillo block and is still active today. Extension is associated with the motion of crustal blocks moving relative to each other, probably above the upper-lower crust boundary. Such extensional deformation can be understood considering that the crust extends and stretches at the same time as it moves towards the NE. The combination of both horizontal lateral motion and extension is characteristic of a tectonic escape process. The northeastward escape of the Trujillo block, which belongs to the larger North Andes block, occurs as a result of the combination of the NW–SE intracontinental convergence between the South-American plate and the Maracaibo block, and the presence to the north of the Caribbean oceanic plate considered as a free boundary. We have showed that the kinematics of the Caribbean plate offers not only a favorable environment, but may also be considered as the driving force of the tectonic escape of the North Andes block.  相似文献   

11.
An assessment of the southern Betsimisaraka Suture (B.S.) of southeastern Madagascar using remote sensing and field investigation reveals a complex deformation history. Image processing of Landsat ETM+data and JERS-I Synthetic Aperture Radar (SAR) imagery was integrated with field observations of structural geology and field petrography. The southern B.S. divides the Precambrian basement rocks of Madagascar in two parts. The western part includes Proterozoic rocks whereas the eastern part is an Archean block, named the Masora block. The southern part of the B.S. includes high-grade metamorphic rocks, recording strong deformation and has mineral deposits including chromite, nickel, and emerald, characteristic of oceanic material that is compatible with a suture zone.Large-scale structural features indicate ductile deformation including three generations of folding (F1, F2, and F3) associated with dextral shearing. The first folding event (F1) shows a succession of folds with NE striking axial planes. The second folding event (F2) mainly has north–south striking axial planes and the last event (F3) is represented by mega folds that have ENE–WSW axial plane directions and have NNW and SSE contractional strain patterns. Closure of the Mozambique Ocean between two components of Gondwana sandwiched rocks of the B.S. and formed upright folds and shortening zones which produced N–S trending lineaments. Later dextral movements followed the contraction and formed NW–SE trending lineaments and N–S trending normal faults associated with dextral strike slip faults and fractures.  相似文献   

12.
Mauro Alberti   《Tectonophysics》2006,421(3-4):231-250
The spatial properties of events in the 1997 Colfiorito–Sellano seismic sequence (Northern Apennines, Italy) were investigated using coherence, a parameter derived from seismic moment tensors that quantifies the kinematic similarity between focal mechanisms. The 1997 Colfiorito–Sellano seismic sequence predominantly consists of normal faulting earthquakes, with a few strike-slip and reverse faulting episodes. This kinematic heterogeneity is possibly related to the contemporaneous activity of two different sets of faults: NW–SE normal faults and NNE–SSW sub-vertical faults, the latter inherited from the previous Miocene compressional phase. The study used two independently-derived data sets of the same seismic sequence characterized by a different number of events and by different precision of spatial localisation. Their statistical significances, assessed through a reshuffling procedure, reveal that data sets with at least some hundreds of events and good positional precision are required to obtain significant results through coherence analysis. Results from the better quality data set indicate that this seismic sequence is characterized by a rapid decrease in the kinematic similarity between earthquake pairs within 2 km of separation, particularly along directions sub-perpendicular to the normal fault strike. The decrease rate seems to be controlled by the geometric characteristics of the normal faults, given that the mean along-dip distance between fault segments is 2 km. In proximity to pre-existing tectonic lineaments the relative abundance of strike-slip and reverse faults tends to decrease the kinematic similarity between events but does not influence the coherence decrease rate. The presence of mixed focal mechanisms (normal, reverse and strike-slip) in a single seismic phase implies that mixed fault types are not restricted to polyphase tectonic histories: such heterogeneous kinematics during a single phase may be induced by the presence of inherited discontinuities.  相似文献   

13.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

14.
This paper presents the first paleostress results from fault-slip data on Cretaceous limestone at the eastern rim of the Dead Sea transform (DST) in Jordan. Stress inversion of fault-slip data is performed using an improved right dieder method, followed by rotational optimization (Delvaux, TENSOR Program). The orientation of the principal stress axes (σ1, σ2 and σ3) and the ratio of the principal stress differences ( ) show two main paleostress fields marking two main stress regimes, strike-slip and extensional. The first is characterized by NNW–SSE compression and ENE–WSW extension and related to Middle Miocene-Recent sinistral movement along the Dead Sea transform and the opening of the Red Sea. The second paleostress field is a WNW–ESE compression and NNE–SSW extension restricted to the northern part of the investigated area. This stress field could be associated with the development of the Syrian Arc fold belt which started during the Turonian, or it may be due to an anticlockwise rotation of the first stress field.  相似文献   

15.
Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest–southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa–Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.  相似文献   

16.
The co-seismic deformations produced during the September 27, 2003 Chuya earthquake (Ms = 7.5) that affected the Gorny Altai, Russia, are described and discussed along a 30 km long segment. The co-seismic deformations have manifested themselves both in unconsolidated sediments as R- and R′-shears, extension fractures and contraction structures, and in bedrock as the reactivation of preexisting schistosity zones and individual fractures, as well as development of new ruptures and coarse crushing zones. It has been established that the pattern of earthquake ruptures represents a typical fault zone trending NW–SE with a width reaching 4–5 km and a dextral strike–slip kinematics. The initial stress field that produced the whole structural pattern of co-seismic deformations during the Chuya earthquake, is associated with a transcurrent regime with a NNW–SSE, almost N–S, trending of compressional stress axis (σ1), and a ENE–WSW, almost E–W, trending of tensional stress axis (σ3). The state of stress in the newly-formed fault zone is relatively uniform. The local stress variations are expressed in insignificant deviation of σ1 from N–S to NW–SE or NE–SW, in short-term fluctuations of relative stress values in keeping their spatial orientations, or in a local increase of the plunge angle of the σ1. The geometry of the fault zone associated with the Chuya earthquake has been compared with the mechanical model of fracturing in large continental fault zones with dextral strike–slip kinematics. It is apparent that the observed fracture pattern corresponds to the late disjunctive stage of faulting when the master fault is not fully developed but its segments are already clearly defined. It has been shown that fracturing in widely different rocks follows the common laws of the deformation of solid bodies, even close to the Earth surface, and with high rates of movements.  相似文献   

17.
We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW–ESE trend. The previous strong sequence close to Lake Trichonis occurred in June–December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW–SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW–SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E–W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW–SE normal fault that strikes at a  45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the importance of further investigations to unravel in detail the tectonics of this region.  相似文献   

18.
The Alboran Sea constitutes a Neogene–Quaternary basin of the Betic–Rif Cordillera, which has been deformed since the Late Miocene during the collision between the Eurasian and African plates in the westernmost Mediterranean. NNE–SSW sinistral and WNW–ESE dextral conjugate fault sets forming a 75° angle surround a rigid basement spur of the African plate, and are the origin of most of the shallow seismicity of the central Alboran Sea. Northward, the faults decrease their transcurrent slip, becoming normal close to the tip point, while NNW–SSE normal and sparse ENE–WSW reverse to transcurrent faults are developed. The uplifting of the Alboran Ridge ENE–WSW antiform above a detachment level was favoured by the crustal layering. Despite the recent anticlockwise rotation of the Eurasian–African convergence trend in the westernmost Mediterranean, these recent deformations—consistent with indenter tectonics characterised by a N164°E trend of maximum compression—entail the highest seismic hazard of the Alboran Sea.  相似文献   

19.
The NW–SE shortening between the African and the Eurasian plates is accommodated in the eastern Betic Cordillera along a broad area that includes large N‐vergent folds and kilometric NE–SW sinistral faults with related seismicity. We have selected the best exposed small‐scale tectonic structures located in the western Huércal‐Overa Basin (Betic Cordillera) to discuss the seismotectonic implications of such structures usually developed in seismogenic zones. Subvertical ESE–WNW pure dextral faults and E–W to ENE–ESW dextral‐reverse faults and folds deform the Quaternary sediments. The La Molata structure is the most impressive example, including dextral ESE–WNW Neogene faults, active southward‐dipping reverse faults and associated ENE–WSW folds. A molar M1 assigned to Mimomys savini allows for precise dating of the folded sediments (0.95–0.83 Ma). Strain rates calculated across this structure give ~0.006 mm a?1 horizontal shortening from the Middle Pleistocene up until now. The widespread active deformations on small‐scale structures contribute to elastic energy dissipation around the large seismogenic zones of the eastern Betics, decreasing the seismic hazard of major fault zones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The intramontane basins of the Betic Cordilleras (SE Spain) formed subsequent to the main phase of orogenic deformation during the middle Miocene in a close genetic relation to the Trans-Alboran Shear zone. Left lateral movements along a local branch (Carboneras fault zone, CF; strike NE–SW) of this zone played a major role in controlling the formation and dynamics of the Nijar-Carboneras Basin. To the south of the fault, a major phase of strike-slip faulting is recorded during the late Tortonian. The expression of this event is the Brèche Rouge de Carboneras (BRC), which seals a deep denudational surface on top of dislocated fault blocks formed by volcanics of the Cabo de Gata complex and early Tortonian shallow marine calcarenite. The sedimentary facies of this widely distributed unit in the Carboneras-Subbasin mirror the submarine topography and the distribution of the fault zones. Along strike-slip fault zones, autoclastic breccias and neptunian dikes preferentially oriented NW–SE and NE–SW occur, which are interpreted to represent the near-surface expression of the faults. Red limestone forms the groundmass of the autoclastic breccia and infills of neptunian dikes, which exhibit multiple phases of opening of fissures, gravitational sedimentary infill, lithification, and renewed creation of cracks. Steep relief, probably along fault scarps, was mantled by epiclastic volcanic conglomerate with a red carbonate matrix. Well-lithified coarse skeletal limestone rich in planktonic foraminifera formed pavements along sediment starved rocky surfaces in deep water. Laterally, within topographic depressions, the pavement limestone grades into thick accumulations of skeletal rudstone composed of fragmented azooxanthellate corals and stylasterid hydrozoans, which were concentrated by powerful bottom currents and gravitiy flows. Within the shallow water zone of dip slope ramps, cross-bedded calcarenite and calcirudite formed. Based on textures, fabrics and biota, rocks of the BRC were grouped into nine genetic lithofacies which document cryptic, deep-aphotic and shallow-photic environments typical of a sediment starved extensional basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号