首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 In this study we investigate the role of heat, freshwater and momentum fluxes in changing the oceanic climate and thermohaline circulation as a consequence of increasing atmospheric CO2 concentration. Two baseline integrations with a fully coupled ocean atmosphere general circulation model with either fixed or increasing atmospheric CO2 concentrations have been performed. In a set of sensitivity experiments either freshwater (precipitation, evaporation and runoff from the continents) and/or momentum fluxes were no longer simulated, but prescribed according to one of the fully coupled baseline experiments. This approach gives a direct estimate of the contribution from the individual flux components. The direct effect of surface warming and the associated feedbacks in ocean circulation are the dominant processes in weakening the Atlantic thermohaline circulation in our model. The relative contribution of momentum and freshwater fluxes to the total response turned out to be less than 25%, each. Changes in atmospheric water vapour transport lead to enhanced freshwater input into middle and high latitudes, which weakens the overturning. A stronger export of freshwater from the Atlantic drainage basin to the Indian and Pacific ocean, on the other hand, intensifies the Atlantic overturning circulation. In total the modified freshwater fluxes slightly weaken the Atlantic thermohaline circulation. The contribution of the modified momentum fluxes has a similar magnitude, but enhances the formation of North Atlantic deep water. Salinity anomalies in the Atlantic as a consequence of greenhouse warming stem in almost equal parts from changes in net freshwater fluxes and from changes in ocean circulation caused by the surface warming due to atmospheric heat fluxes. Important effects of the momentum fluxes are a poleward shift of the front between Northern Hemisphere subtropical and subpolar gyres and a southward shift in the position of the Antarctic circumpolar current, with a clear signal in sea level. Received: 3 May 1999 / Accepted: 11 December 1999  相似文献   

2.
Zhaomin Wang 《Climate Dynamics》2005,25(2-3):299-314
The McGill Paleoclimate Model-2 (MPM-2) is employed to study climate–thermohaline circulation (THC) interactions in a pre -industrial climate, with a special focus on the feedbacks on the THC from other climate system components. The MPM-2, a new version of the MPM, has an extended model domain from 90S to 90N, active winds and no oceanic heat and freshwater flux adjustments. In the MPM-2, there are mainly two stable modes for the Atlantic meridional overturning circulation (MOC) under the ‘present-day’ forcing (present-day solar forcing and the pre-industrial atmospheric CO2 level of 280 ppm). The ‘on’ mode has an active North Atlantic deep water formation, while the ‘off’ mode has no such deep water formation. By comparing the ‘off’ mode climate state with its ‘on’ mode analogue, we find that there exist many large differences between the two climate states, which originate from large changes in the oceanic meridional heat transports. By suppressing or isolating each process associated with a continental ice sheet over North America, sea ice, the atmospheric hydrological cycle and vegetation, feedbacks from these components on the Atlantic MOC are investigated. Sensitivity studies investigating the role of varying continental ice growth and sea ice meridional transport in the resumption of the Atlantic MOC are also carried out. The results show that a fast ice sheet growth and an enhanced southward sea ice transport significantly favor the resumption of the Atlantic MOC in the MPM-2. In contrast to this, the feedback from the atmospheric hydrological cycle is a weak positive one. The vegetation-albedo feedback could enhance continental ice sheet growth and thus could also favor the resumption of the Atlantic MOC. However, before the shut-down of the Atlantic MOC, feedbacks from these components on the Atlantic MOC are very weak.  相似文献   

3.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

4.
Freshening of high latitude surface waters can change the large-scale oceanic transport of heat and salt. Consequently, atmospheric and sea ice perturbations over the deep water production sites excite a large-scale response establishing an oceanic "teleconnection" with time scales of years to centuries. To study these feedbacks, a coupled atmosphere-ocean-sea ice model consisting of a two dimensional atmospheric energy and moisture balance model (EMBM) coupled to a thermodynamic sea ice model and an ocean general circulation model is utilised. The coupled model reproduces many aspects of the present oceanic circulation. We also investigate the climate impact of changes in fresh water balance during an ice age initiation. In this experiment part of the precipitation over continents is stored within continental ice sheets. During the buildup of ice sheets the oceanic stratification in the North Atlantic is weakened by a reduced continental run-off leading to an enhanced thermohaline circulation. Under these conditions salinity is redistributed such that deep water is more saline than under present conditions. Once the ice sheets built up, we simulate an ice age climate without net fresh water storage on the continents. In this case the coupled model reproduces the shallow and weak overturning cell, an ice edge advance insulating the upper ocean, and many other aspects of the glacial circulation.  相似文献   

5.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

6.
《大气与海洋》2013,51(2):81-92
Abstract

Evidence based on numerical simulations is presented for a strong correlation between the North Atlantic Oscillation (NAO) and the North Atlantic overturning circulation. Using an ensemble of numerical experiments with a coupled ocean‐atmosphere model including both natural and anthropogenic forcings, it is shown that the weakening of the thermohaline circulation (THC) could be delayed in response to a sustained upward trend in the NAO, which was observed over the last three decades of the twentieth century, 1970–99. Overall warming and enhanced horizontal transports of heat from the tropics to the subpolar North Atlantic overwhelm the NAO‐induced cooling of the upper ocean layers due to enhanced fluxes of latent and sensible heat, so that the net effect of warmed surface ocean temperatures acts to increase the vertical stability of the ocean column. However, the strong westerly winds cause increased evaporation from the ocean surface, which leads to a reduced fresh water flux over the western part of the North Atlantic. Horizontal poleward transport of salinity anomalies from the tropical Atlantic is the major contributor to the increasing salinities in the sinking regions of the North Atlantic. The effect of positive salinity anomalies on surface ocean density overrides the opposing effect of enhanced warming of the ocean surface, which causes an increase in surface density in the Labrador Sea and in the ocean area south of Greenland. The increased density of the upper ocean layer leads to deeper convection in the Labrador Sea and in the western North Atlantic. With a lag of four years, the meridional overturning circulation of the North Atlantic shows strengthening as it adjusts to positive density anomalies and enhanced vertical mixing. During the positive NAO trend, the salinity‐driven density instability in the upper ocean, due to both increased northward ocean transports of salinity and decreased atmospheric freshwater fluxes, results in a strengthening overturning circulation in the North Atlantic when the surface atmospheric temperature increases by 0.3°C and the ocean surface temperature warms by 0.5° to 1°C.  相似文献   

7.
Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth's climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation, and hence latitudinal heat transport, would have a significant effect on global climate. Paleoclimate evidence from the Greenland ice cores and deep sea sediment cores suggests that during much of glacial time the climate system oscillated between two different states. Bimodal equilibrium states of the thermohaline circulation have been demonstrated in climate models. We address the question of the role of the atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean's latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, the on mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The off mode has strong deep water production in the Southern Ocean and weak production in the North Pacific. Heat transport into the high latitude North Atlantic by the ocean is reduced to about 20% of the on mode value. For estimated values of water vapor transport for the present climate the model asserts that while water vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changed little over the last 9000 years.  相似文献   

8.
The 'conveyor belt' circulation of the Atlantic Ocean transports large amounts of heat northward, acting as a heating system for the northern North Atlantic region. It is widely thought that this circulation is driven by atmospheric freshwater export from the Atlantic catchment region, and that it transports freshwater northward to balance the loss to the atmosphere. Using results from a simple conceptual model and a global circulation model, it is argued here that the freshwater loss to the atmosphere arises mainly in the subtropical South Atlantic and is balanced by northward freshwater transport in the wind-driven subtropical gyre, while the thermohaline circulation transports freshwater southward. It is further argued that the direction of freshwater transport is closely linked to the dynamical regime and stability of the 'conveyor belt': if its freshwater transport is indeed southward, then its flow is purely thermally driven and inhibited by the freshwater forcing. In this case the circulation is not far from Stommel's saddle-node bifurcation, and a circulation state without NADW formation would also be stable. Received: 10 February 1996 / Accepted: 30 May 1996  相似文献   

9.
The South Atlantic response to a collapse of the North Atlantic meridional overturning circulation (AMOC) is investigated in the ECHAM5/MPI-OM climate model. A reduced Agulhas leakage (about 3.1?Sv; 1?Sv?=?106?m3?s?1) is found to be associated with a weaker Southern Hemisphere (SH) supergyre and Indonesian throughflow. These changes are due to reduced wind stress curl over the SH supergyre, associated with a weaker Hadley circulation and a weaker SH subtropical jet. The northward cross-equatorial transport of thermocline and intermediate waters is much more strongly reduced than Agulhas leakage in relation with an AMOC collapse. A cross-equatorial gyre develops due to an anomalous wind stress curl over the tropics that results from the anomalous sea surface temperature gradient associated with reduced ocean heat transport. This cross-equatorial gyre completely blocks the transport of thermocline waters from the South to the North Atlantic. The waters originating from Agulhas leakage flow somewhat deeper and most of it recirculates in the South Atlantic subtropical gyre, leading to a gyre intensification. This intensification is consistent with the anomalous surface cooling over the South Atlantic. Most changes in South Atlantic circulation due to global warming, featuring a reduced AMOC, are qualitatively similar to the response to an AMOC collapse, but smaller in amplitude. However, the increased northward cross-equatorial transport of intermediate water relative to thermocline water is a strong fingerprint of an AMOC collapse.  相似文献   

10.
An OGCM hindcast is used to investigate the linkages between North Atlantic Ocean salinity and circulation changes during 1963–2003. The focus is on the eastern subpolar region consisting of the Irminger Sea and the eastern North Atlantic where a careful assessment shows that the simulated interannual to decadal salinity changes in the upper 1,500 m reproduce well those derived from the available record of hydrographic measurements. In the model, the variability of the Atlantic meridional overturning circulation (MOC) is primarily driven by changes in deep water formation taking place in the Irminger Sea and, to a lesser extent, the Labrador Sea. Both are strongly influenced by the North Atlantic Oscillation (NAO). The modeled interannual to decadal salinity changes in the subpolar basins are mostly controlled by circulation-driven anomalies of freshwater flux convergence, although surface salinity restoring to climatology and other boundary fluxes each account for approximately 25% of the variance. The NAO plays an important role: a positive NAO phase is associated with increased precipitation, reduced northward salt transport by the wind-driven intergyre gyre, and increased southward flows of freshwater across the Greenland–Scotland ridge. Since the NAO largely controlled deep convection in the subpolar gyre, fresher waters are found near the sinking region during convective events. This markedly differs from the active influence on the MOC that salinity exerts at decadal and longer timescales in most coupled models. The intensification of the MOC that follows a positive NAO phase by about 2 years does not lead to an increase in the northward salt transport into the subpolar domain at low frequencies because it is cancelled by the concomitant intensification of the subpolar gyre which shifts the subpolar front eastward and reduces the northward salt transport by the North Atlantic Current waters. This differs again from most coupled models, where the gyre intensification precedes that of the MOC by several years.  相似文献   

11.
 Effects of the seasonal variation in thermohaline and wind forcing on the abyssal circulation are investigated by using an ocean general circulation model. To isolate effects of the seasonality in the thermohaline forcing from those in the wind forcing, we carry out three experiments with (1) annual-mean wind forcing and perpetual-winter thermohaline forcing, (2) annual-mean wind forcing and seasonal thermohaline forcing, and (3) seasonal wind forcing and seasonal thermohaline forcing. The deep water under the seasonal thermohaline forcing becomes warmer than under the perpetual-winter thermohaline forcing. Although the perpetual-winter thermohaline forcing is widely used and believed to reproduce the deep water better than the annual-mean forcing, the difference between the results of the perpetual-winter and the seasonal thermohaline forcing is significant. The seasonal variation of the Ekman convergence and divergence produces meridional overturning cells extending to the bottom because the period of seasonal cycle is shorter than the adjustment timescale by baroclinic Rossby waves. The heat transport owing to those Ekman flows and temperature anomalies makes the upper water (0–200 m) colder at low to mid-latitudes (40S–40N) and warmer at high latitudes. Also the deep water becomes warmer owing to the warming of the northern North Atlantic, the main source region of North Atlantic Deep Water. The model is also synchronously (i.e., without acceleration) integrated with seasonal forcing for 5400 y. A past study suggested that under seasonal forcing, a sufficient equilibrium state can be achieved after only decades of synchronous integration following more than 10 000 y of accelerated integration. Here, the result so obtained is compared with that of the 5400-y synchronous integration. The difference in the global average temperature is as small as 0.12 °C, and most of the difference is confined to the Southern Ocean. Received: 1 May 1998 / Accepted: 5 January 1999  相似文献   

12.
A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic.  相似文献   

13.
We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude–latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
We use a coarse resolution ocean general circulation model to study the relation between meridional pressure and density gradients in the Southern Ocean and North Atlantic and the Atlantic meridional overturning circulation. In several experiments, we artificially modify the meridional density gradients by applying different magnitudes of the Gent–McWilliams isopycnal eddy diffusion coefficients in the Southern Ocean and in the North Atlantic and investigate the response of the simulated Atlantic meridional overturning to such changes. The simulations are carried out close to the limit of no diapycnal mixing, with a very small explicit vertical diffusivity and a tracer advection scheme with very low implicit diffusivities. Our results reveal that changes in eddy diffusivities in the North Atlantic affect the maximum of the Atlantic meridional overturning, but not the outflow of North Atlantic Deep Water into the Southern Ocean. In contrast, changes in eddy diffusivities in the Southern Ocean affect both the South Atlantic outflow of North Atlantic Deep Water and the maximum of the Atlantic meridional overturning. Results from these experiments are used to investigate the relation between meridional pressure gradients and the components of the Atlantic meridional overturning. Pressure gradients and overturning are found to be linearly related. We show that, in our simulations, zonally averaged deep pressure gradients are very weak between 20°S and about 30°N and that between 30°N and 60°N the zonally averaged pressure grows approximately linearly with latitude. This pressure difference balances a westward geostrophic flow at 30–40°N that feeds the southbound deep Atlantic western boundary current. We extend our analysis to a large variety of experiments in which surface freshwater forcing, vertical mixing and winds are modified. In all experiments, the pycnocline depth, assumed to be the relevant vertical scale for the northward volume transport in the Atlantic, is found to be approximately constant, at least within the coarse vertical resolution of the model. The model behaviour hence cannot directly be related to conceptual models in which changes in the pycnocline depth determine the strength of Atlantic meridional flow, and seems conceptually closer to Stommel’s box model. In all our simulations, the Atlantic overturning seems to be mainly driven by Southern Ocean westerlies. However, the actual strength of the Atlantic meridional overturning is not determined solely by the Southern Ocean wind stress but as well by the density/pressure gradients created between the deep water formation regions in the North Atlantic and the inflow/outflow region in the South Atlantic.  相似文献   

15.
Local and remote impacts of a tropical Atlantic salinity anomaly   总被引:1,自引:1,他引:0  
The climatic impacts of an enhanced evaporation prescribed during 50 years in the tropical Atlantic are investigated in a coupled ocean–atmosphere general circulation model. Locally, the salinity increase leads to a rapid deepening and cooling of the surface mixed layer. This induces a deepening of the equatorial undercurrent and an intensification of the south equatorial current. A remote atmospheric response to the tropical Atlantic perturbation is detected in the North Atlantic sector after ten years. It has the form of a robust wave-like tropospheric perturbation seemingly excited by the weakening of atmospheric deep convection over the Amazonian basin. Meanwhile, the salt anomaly is carried northward by the mean oceanic circulation. It is traced up to the convection sites and then on its return path at depth towards lower latitudes. Consistent with the density increase, deep convection is enhanced after the arrival of the salt anomaly and the Atlantic meridional overturning circulation (AMOC) intensifies about 20 years after the beginning of the perturbation. The adjustment of the tropical Atlantic to the AMOC intensification then modifies its initial response to the freshwater forcing, leading to a weaker cooling in the northern tropical Atlantic than in the southern tropical Atlantic, a slight northward shift of the tropical Atlantic precipitation pattern and an intensification of the North Brazil current. On the other hand, no significant anomalous precipitations are found in the Pacific. The initial remote atmospheric response is also modulated, by an NAO-like response to the AMOC intensification.  相似文献   

16.
The influence of changes in surface wind-stress on the properties (amplitude and period) and domain of existence of thermohaline millennial oscillations is studied by means of a coupled model of intermediate complexity set up in an idealized spherical sector geometry of the Atlantic basin. Using the atmospheric CO2 concentration as the control parameter, bifurcation diagrams of the model are built to show that the influence of wind-stress changes on glacial abrupt variability is threefold. First, millennial-scale oscillations are significantly amplified through wind-feedback-induced changes in both northern sea ice export and oceanic heat transport. Changes in surface wind-stress more than double the amplitude of the strong warming events that punctuate glacial abrupt variability obtained under prescribed winds in the model. Second, the average duration of both stadials and interstadials is significantly lengthened and the temporal structure of observed variability is better captured under interactive winds. Third, the generation of millennial-scale oscillations is shown to occur for significantly colder climates when wind-stress feedback is enabled. This behaviour results from the strengthening of the negative temperature-advection feedback associated with stronger northward oceanic heat transport under interactive winds.  相似文献   

17.
It has recently been suggested that the structure and strength of the meridional overturning circulation in the global ocean is governed by the input of mechanical energy to the system by winds and tides. However, it is not clear how this suggestion relates to the existence of multiple equilibria of the meridional overturning circulation, which depends on thermohaline feedbacks and is more consistent with a buoyancy-driven view of the circulation. Both theories have been illustrated by box models in the past (Stommel in Tellus 13:224–230, 1961; Gnanadesikan in Science 283:2077–2079, 1999). Here we incorporate these two theories into a single box model in an attempt to reconcile the roles of mechanical and buoyancy forcing in driving the meridional overturning circulation. The box model has two equilibrium solutions, one with sinking at high northern latitudes as in the present-day Atlantic, and one without. The circulation is mechanically driven, but the northern sinking can be thought of as a release valve which acts as a sink of potential energy when the surface water at high northern latitudes is dense enough to convect. While the source of energy comes from mechanical forcing, the presence or otherwise of multiple equilibria is therefore determined by thermohaline feedbacks. In some areas of parameter space an oscillation between the model’s two circulation regimes occurs, reminiscent of a bipolar seesaw.  相似文献   

18.
The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean—atmosphere—sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard—Oeschger events, may be internal instabilities of the climate system.  相似文献   

19.
The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland?CScotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.  相似文献   

20.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号