首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on theoretical models of the ionosphere and the plasmasphere, the ion composition variations in the plasmasphere and the plasmapause structure were studied depending on the choice of the distribution model of the magnetospheric convection electric field at low and high geomagnetic activity at the equinox and the December solstice. Based on the model calculations performed, the plasmapause shape and size during an increase and decrease in geomagnetic activity were studied. It was revealed that the size of the plasmasphere mainly depends on the magnetic local time (MLT) sector and the level of geomagnetic activity, and it greatly depends on the maximum universal time during the equinox. The Earth’s plasmasphere asymmetry is manifested in the noon-midnight and morning-evening directions. The analysis results of daily and seasonal variations in the ionic composition of the Earth’s plasmasphere at a moderate solar activity level show that there is a certain increase in the ion concentrations of H+ and He+ in the winter period probably due to an increase in the exospheric density at the summer to winter transition. The data obtained are in good agreement with satellite observations which makes it possible to use the model proposed to study the plasmasphere under different geophysical conditions.  相似文献   

2.
地磁扰动期间等离子体层顶结构的模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
本文选取2001年6月8-10日的一个亚暴事件,模拟了在这期间等离子体层的结构演化过程.选取Weimer(2001模式)电场和Tsyganenko(1996模式)磁场作为背景电磁场,基于E×B的漂移运动计算磁赤道面内的带电粒子分布,模拟磁扰期间的等离子体层变化.模拟了等离子体层顶的结构和形状,结果有羽状、肩状和通道状结构,与同一时间点的EUV/IMAGE探测结果一致.  相似文献   

3.
Summary The observations of the ACTIVE Project satellites in the interval of March 17–23, 1990 were analyzed for the purpose of studying the response of the outer ionosphere to the magnetic storm with SSC on March 20 at 22.43 UT. In particular, measurements of thermal plasma parameters were used, but VLF broadband measurements and data on energetic ion and electron fluxes in the range of 17.7–272 keV were also available. The results of this case study show that the observations in the morning sector at altitudes around 2000 km reflect well the state of the plasmasphere during enhanced activity, namely the depth to which the plasmasphere has been affected by enhanced magnetospheric convection. They also provide the possibility of monitoring the initial phase of recovery. The early evening observations of the plasma parameters in the outer ionosphere at altitudes of 500–1000 km indicate a distinct trough in electron concentration. In the dusk sector, the equatorward edge of this trough can be assumed to be the projection of the equatorial plasmapause. This, combined with the occurrence of electron temperature peaks and with the morning plasmapause position, enables one to judge whether the plasmaspheric bulge has formed and whether an inner plasmapause has occurred.  相似文献   

4.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   

5.
We use magnetic field-aligned mapping between the ionosphere and the magnetosphere to intercompare ground-based observations of storm enhanced density (SED), and plasmasphere drainage plumes imaged from space by the IMAGE EUV imager, with the enhanced inner-magnetosphere/ionosphere SAPS electric field which develops during large storms. We find that the inner edge of the SAPS electric field overlaps the erosion plume and that plume material is carried sunward in the SAPS overlap region. The two phenomena, SED in the ionosphere and the erosion plume at magnetospheric heights, define a common trajectory for sunward-propagating cold plasma fluxes in the midnight—dusk–postnoon sector. The SAPS channel at ionospheric heights and its projection into the equatorial plane serve to define the sharp outer boundary of the erosion plume. The SAPS electric field abuts and overlaps both the plasmasphere boundary layer and the plasmasphere erosion plume from pre-midnight through post-noon local times.  相似文献   

6.
Summary VLF quarter-gyrofrequency emissions, whose experimental characteristics differ from those of discrete plasmaspheric emissions usual during active times, have been observed by low-altitude Intercosmos 24 and Magion 2 satellites within the plasmasphere during periods of quieting geomagnetic activity. A new kind of instability is proposed which could lead to the production of these emissions. It is shown that quasi-electrostatic whistler waves can be generated in the eqquatorial region due to the fan instability, with maximum growth rate and spectral energy density in a frequency band below one half of the equatorial electron gyrofrequency. The observations of low-energy electrons and plasma waves in the equatorial region within or in the vicinity of the plasmapause, which could support our hypothesis experimentally, are discussed.  相似文献   

7.
地球磁层中的电场是研究磁层物理的重要参数,目前常用的对流电场有均匀晨昏电场和投影电场.电离层电场可以看做磁层电场沿磁力线在电离层的投影,本文选取的电离层电场模型为Weimer(2001模式)电场.利用T96磁场模式,沿磁力线将电离层电场投影到磁层空间,得到一个新的磁层电场模式,并讨论了磁暴、行星际磁场(IMF)、太阳风参数和亚暴等对磁层电场的影响.利用该模型计算的电场结果与卫星探测结果相符.  相似文献   

8.
The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O+, tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing altitude in the trough, where H+ emerges as the dominant ion on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-latitude side of the trough as expected if this topside ionosphere H+ distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O+ to a H+ dominated plasma through the main trough boundaries.  相似文献   

9.
The plasma sheet moves earthward (equatorward in the ionosphere) after enhancements in convection, and the electrodynamics of this response is strongly influenced by Region 2 magnetosphere–ionosphere coupling. We have used Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR) observations associated with two relatively abrupt southward turnings of the IMF to provide an initial evaluation of aspects of this response. The observations show that strong westward sub-auroral polarization streams (SAPS) flow regions moved equatorward as the plasma sheet electron precipitation (the diffuse aurora) penetrated equatorward following the IMF southward turnings. Consistent with our identification of these flows as SAPS, concurrent DMSP particle precipitation measurements show the equatorial boundary of ion precipitation equatorward of the electron precipitation boundary and that westward flows lie within the low-conductivity region between the two boundaries where the plasma sheet ion pressure gradient is expected to drive downward R2 currents. Evidence for these downward currents is seen in the DMSP magnetometer observations. Preliminary examination indicates that the SAPS response seen in the examples presented here may be common. However, detailed analysis will be required for many more events to reliably determine if this is the case. If so, it would imply that SAPS are frequently an important aspect of the inner magnetospheric electric field distribution, and that they are critical for understanding the response of the magnetosphere–ionosphere system to enhancements in convection, including understanding the earthward penetration of the plasma sheet. This earthward penetration is critical to geomagnetic disturbance phenomena such as the substorm growth phase and the formation of the stormtime ring current. Additionally, for one example, a prompt electric field response to the IMF southward turnings is seen within the inner plasma sheet.  相似文献   

10.
11.
In the period of the International Geophysical Year (IGY), almost the entire planet was covered for the first time by ground-based geophysical observations. Their analysis led to two fundamental results: the existence of the auroral oval and auroral (magnetospheric) substorm. At the final stage of the IGY, satellite explorations of the near-Earth space began. The auroral luminosity appeared to be related to the plasma structure of the magnetosphere. That opened new possibilities for parameters diagnostics of the Earth’s magnetosphere on the basis of ground-based aurora observations. The concepts of auroral oval and magnetospheric substorm became paradigms of the new science of solar-terrestrial physics.  相似文献   

12.
Observations using the very large array (VLA) radio interferometer during the past five years have enabled the discovery of a new type of plasmasphere disturbance, the magnetic eastward-directed wave. Previous work indicated these disturbances were likely frozen to the geomagnetic field as determined from their azimuth distributions. This work provides a method to explain more accurately the azimuth distribution, thereby allowing the calculation of the disturbances location in the plasmasphere independently of the measured velocity. The measurable velocity due to corotation is calculated and subtracted from the measured trace velocity. This difference, or deviation from corotation, is attributed to electrodynamic convection; the measurement of plasmaspheric convection may lead to the eventual monitoring of mid-latitude electric fields. Disturbances are seen convecting predominantly westward, with the fastest having angular velocities greater than the anticorotating VLA line of sight. The direction of convection and conditions of observations indicate that the disturbances are likely the same phenomenon seen by the Los Alamos satellite beacon array.  相似文献   

13.
14.
Data from the VLF Doppler experiment at Faraday, Antarctica (65○ S, 64○ W) are used to study the penetration of the high-latitude convection electric field to lower latitudes during severely disturbed conditions. Alterations of the electric field at L-values within the range 2.0 - 2.7 are studied for two cases at equinox (10 - 12 September 1986 and 1 - 3 May 1986). The recovery of the electric field is found to be approximately an exponential function of time. Values for the equatorial meridional E×B drift velocity, inferred from the data, are used as inputs to a model of the plasmasphere and ionosphere. The model and experimental results are used to investigate the post-storm alteration of ionospheric coupling processes. The magnitude of the effect of ionosphere-plasmasphere coupling fluxes on NmF2 values and the O+-H+ transition height is dependent on the local time of storm commencement, and on the orientation of the electric field. The coupling fluxes appear to have a maximum influence on ionospheric content during the main phase of geomagnetic activity that produces outward motion of plasmaspheric whistler ducts.  相似文献   

15.
Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the “electric field-dominant” and “conductivity-dominant” auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions.  相似文献   

16.
The connection between rapid increases in the intensity of electrons with energies >0.3 MeV and magnetospheric substorms was studied for the first time by measurements of energetic electrons on the low-orbit SERVIS-1 satellite. In addition to the well-known process of radial diffusion detected at the recovery phase, the increases during a period of time no longer than 1.5 h at the main phase of six magnetic storms in a channel of 0.3–1.7 MeV (in three of them, in a channel of 1.7–3.4 MeV) were measured. An analysis of auroral zone magnetograms demonstrated that the increases occurred at the instant of magnetospheric substorm activation. A conclusion is made that the increases are caused by the radial injection of electrons by a pulse electric field induced during substorm activations. Pulse injections are shown to be one of the main mechanisms of electron radiation belt completion in the inner magnetosphere and, in combination with moderate radial diffusion, to be responsible for the appearance of large fluxes of energetic electrons (“killers”) in the magnetosphere after magnetic storms.  相似文献   

17.
In order to investigate the causal relationship between magnetic storms and substorms, variations of the mid-latitude geomagnetic indices, ASY (asymmetric part) and SYM (symmetric part), at substorm onsets are examined. Substorm onsets are defined by three different phenomena; (1) a rapid increase in the mid-latitude asymmetric-disturbance indices, ASY-D and ASY-H, with a shape of so-called ‘mid-latitude positive bay’; (2) a sharp decrease in the AL index; (3) an onset of Pi2 geomagnetic pulsation. The positive bays are selected using eye inspection and a pattern-matching technique. The 1-min-resolution SYM-H index, which is essentially the same as the hourly Dst index except in terms of the time resolution, does not show any statistically significant development after the onset of substorms; it tends to decay after the onset rather than to develop. It is suggested by a simple model calculation that the decay of the magnetospheric tail current after substorm onset is responsible for the decay of the Dst field. The relation between the IMF southward turning and the development of the Dst field is reexamined. The results support the idea that the geomagnetic storms and substorms are independent processes; that is, the ring-current development is not the result of the frequent occurrence of substorms, but that of enhanced convection caused by the large southward IMF. A substorm is the process of energy dissipation in the magnetosphere, and its contribution to the storm-time ring-current formation seems to be negligible. The decay of the Dst field after a substorm onset is explained by a magnetospheric energy theorem.  相似文献   

18.
The paper addresses the issue of upward acceleration of ions along geomagnetic field lines. It has been shown that ion acceleration by electric field oscillations (formerly known as magnetic moment “pumping” or MMP) may be treated as a centrifugal acceleration mechanism. More precisely, the case in point is oscillatory centrifugal acceleration; this brings up the question on comparing the MMP with the centrifugal acceleration caused by the quasi-static magnetospheric convection field. It has been found that at high geomagnetic latitudes, the oscillatory centrifugal force is weaker or stronger than the centrifugal force of magnetospheric convection if the ratio of the electric field oscillation amplitude to the mean field is correspondingly lower or higher than \(\sqrt 2 \). Analysis of data from measurements and calculations of magnetospheric electric fields suggests that, contrary to current opinion, the oscillatory centrifugal force may be comparable to the centrifugal force of magnetospheric convection and even exceed it when strong global Pc5 pulsations are excited in the magnetosphere.  相似文献   

19.
The in situ observations of the Earth magnetosphere performed over the past decades of space research have provided a rather good understanding of many partial localized processes of the magnetospheric substorm. The continuing lack of global observations inhibits the construction of a coherent picture of the substorm as a whole, which is actually determined by the coupling of the partial processes. In this context the importance of global observations for the advancement of magnetospheric substorm studies is critical. This paper presents briefly a promising technique of global observations, namely the imaging of charge exchange neutral atoms, or neutral atom imaging (NAI) of the magnetosphere. Model and theoretical estimates of charge-exchange neutral atom fluxes, as well as appropriate spacecraft orbit and instrumentation requirements are presented and discussed for specific regions of interest and vantage points. The potential merits of NAI for substorm research are presented along with possible combinations with other types of observational methods. Substorm issues that would benefit from NAI should include among others the assessment of the ionospheric contribution to the hot magnetospheric plasma, the relative importance of various ionospheric ion source regions, the resolution of spatial and temporal characteristics of substorm ion injections. NAI observations can be precious complements to local observations and lead to the understanding of how local processes, many of which are resolved quite well today, combine to form the global process of the magnetospheric substorm.  相似文献   

20.
The causes of the formation of neutral gas temperature and density equatorial minimums on the dayside, recently detected from satellite measurements, have been studied based on a global numerical model of the Earth’s upper atmosphere (UAM). The performed numerical experiments made it possible to conclude that these minimums are not related to the magnetospheric sources of energy and momentum and electric fields of the dynamo origin. It has been indicated that the absorbed solar ionizing radiation and rotation of the Earth are responsible for the formation of the neutral gas temperature and density equatorial minimums on the dayside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号