首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis of differently cell-sized phytoplankton, natural phytoplankton assemblages from the coastal waters of the South China Sea were separated into three groups (>20, 5–20, and <5 μm) and exposed to four different solar UV spectral regimes, i.e., 280–700 nm (PAR?+?UVR), 400–700 nm (PAR), 280–400 nm (UV-A?+?B), and 315–400 nm (UV-A). In situ carbon fixation measurements revealed that microplankton (>20 μm) efficiently utilized UV-A for photosynthetic carbon fixation, with assimilation number of up to 1.01 μg C (μg chl a)?1?h?1 under 21.4 W?m?2 UV-A alone (about half of noontime irradiance at the surface), about 40 % higher than nanoplankton (5–20 μm). UV-B (280–315 nm) of 0.95 W?m?2 reduced the carbon fixation by approximately 20 and 57 % in microplankton and nanoplankton assemblages, respectively. In contrast, smaller picoplankton (<5 μm) was unable to utilize UV-A for the photosynthetic carbon fixation. In addition, only micro-sized assemblages demonstrated the UV enhancement on their primary productivity in the presence of PAR, by about 8 % under moderate intensities of solar radiation.  相似文献   

2.
Atmospheric deposition of nitrogen (AD-N) is a significant source of nitrogen enrichment to nitrogen (N)-limited estuarine and coastal waters downwind of anthropogenic emissions. Along the eastern U.S. coast and eastern Gulf of Mexico, AD-N currently accounts for 10% to over 40% of new N loading to estuaries. Extension of the regional acid deposition model (RADM) to coastal shelf waters indicates that 11, 5.6, and 5.6 kg N ha−1 may be deposited on the continental shelf areas of the northeastern U.S. coast, southeast U.S. coast, and eastern Gulf of Mexico, respectively. AD-N approximates or exceeds riverine N inputs in many coastal regions. From a spatial perspective, AD-N is a unique source of N enrichment to estuarine and coastal waters because, for a receiving water body, the airshed may exceed the watershed by 10–20 fold. AD-N may originate far outside of the currently managed watersheds. AD-N may increase in importance as a new N source by affecting waters downstream of the oligohaline and mesohaline estuarine nutrient filters where large amounts of terrestrially-supplied N are assimilated and denitrified. Regionally and globally, N deposition associated with urbanization (NOx, peroxyacetyl nitrate, or PAN) and agricultural expansion (NH4 + and possibly organic N) has increased in coastal airsheds. Recent growth and intensification of animal (poultry, swine, cattle) operations in the midwest and mid-Atlantic regions have led to increasing amounts of NH4 + emission and deposition, according to a three decadal analysis of the National Acid Deposition Program network. In western Europe, where livestock operations have dominated agricultural production for the better part of this century, NH4 + is the most abundant form of AD-N. AD-N deposition in the U.S. is still dominated by oxides of N (NOx) emitted from fossil fuel combustion; annual NH4 + deposition is increasing, and in some regions is approaching total NO3 deposition. In receiving estuarine and coastal waters, phytoplankton community structural and functional changes, associated water quality, and trophic and biogeochemical alterations (i.e, algal blooms, hypoxia, food web, and fisheries habitat disruption) are frequent consequences of N-driven eutrophication. Increases in and changing proportions of various new N sources regulate phytoplankton competitive interactions, dominance, and successional patterns. These quantitative and qualitative aspects of AD-N and other atmospheric nutrient sources (e.g., iron) may promote biotic changes now apparent in estuarine and coastal waters, including the proliferation of harmful algal blooms, with cascading impacts on water quality and fisheries.  相似文献   

3.
The chemical reactivity of uranium was investigated across estuarine gradients from two of the world’s largest river systems: the Amazon and Mississippi. Concentrations of dissolved (<0.45 μm) uranium (U) were measured in surface waters of the Amazon shelf during rising (March 1990), flood (June 1990) and low (November 1991) discharge regimes. The dissolved U content was also examined in surface waters collected across estuarine gradients of the Mississippi outflow region during April 1992, August 1993, and November (1993). All water samples were analyzed for U by isotope dilution inductively coupled plasma mass spectrometry (ICP-MS). In Amazon shelf surface waters uranium increased nonconservatively from about 0.01 μg I?1 at the river’s mouth to over 3 μg I?1 at the distal site, irrespective of river discharge stage. Observed large-scale U removal at salinities generally less than 15 implies a) that riverine dissolved U was extensively adsorbed by freshly-precipitated hydrous metal oxides (e.g., FeOOH, MnO2) as a result of flocculation and aggregation, and b) that energetic resuspension and reworking of shelf sediments and fluid muds on the Amazon shelf released a chemically reactive particle/colloid to the water column which can further scavenge dissolved U across much of the estuarine gradient. In contrast, the estuarine chemistry of U is inconclusive within surface waters of the Mississippi shelf-break region. U behavior is most likely controlled less by traditional sorption and/or desorption reactions involving metal oxides or colloids than by the river’s variable discharge regime (e.g., water parcel residence time during estuarine mixing, nature of particulates, sediment storage and resuspension in, the confined lower river), and plume dispersal. Mixing of the thin freshwater lens into ambient seawater is largely defined by wind-driven rather than physical processes. As a consequence, in the Mississippi outflow region uranium predominantly displays conservative behavior; removal is evident only during anomalous river discharge regimes. ‘Products-approach’ mixing experiments conducted during the Flood of 1993 suggest the importance of small particles and/or colloids in defining a depleted U versus salinity distribution.  相似文献   

4.
The fish community of Swartvlei, a southern African coastal lake, was sampled using gill and lift nets. A primary aim of the research was to determine the fish biomass of the lake shelf region as well as the distribution patterns of marine species which utilize this estuarine system as a nursery and/or foraging area. The catch per unit effort of fishes was more than three times higher in the littoral zone when compared to the pelagic, slope, or profundal zones. Both habitat diversity and available food resources were maximal in the shelf region. The biomass of the littoral fish community during 1980 was estimated at 12.4 g m2 wet weight, with detritivorous species contributing 3.2 g m?2, zoobenthos consumers 2.8 gm2, piscivorous species 2.3 g m2, herbivorous/epifaunal consumers 2.7 g m?2, and zooplanktivorous species 1.4 g m2. Published information on fish atanding stock estimates from various estuaries and coastal habitats around the world is collated and compared. It is concluded that estuarine fish biomasses do not excced those of productive freshwater or marine environments and that further research is necessary to determine the size and variability of estuarine fish stocks in relation to other ecosystems.  相似文献   

5.
We present a comparative analysis of 1400 data series of water chemistry (particularly nitrogen and phosphorus concentrations), phytoplankton biomass as chlorophylla (chla) concentrations, concentrations of suspended matter and Secchi depth transparency collected from the mid-1980s to the mid-1990s from 162 stations in 27 Danish fjords and coastal waters. The results demonstrate that Danish coastal waters were heavily eutrophied and had high particle concentrations and turbid waters. Median values were 5.1 μg chla 1−1, 10.0 mg DW 1−1 of suspended particles, and Secchi depth of 3.6 m. Chlorophyll concentration was strongly linked to the total-nitrogen concentration. The strength of this relationship increased from spring to summer as the concentration of total nitrogen declined. During summer, total nitrogen concentrations accounted for about 60% of the variability in chlorophyll concentrations among the different coastal systems. The relationship between chlorophyll and total phosphorus was more consistant over the year and correlations were much weaker than encountered for total nitrogen. Secchi depth could be predicted with good precision from measurements of chlorophyll and suspended matter. In a multiple stepwise regression model with In-transformed values the two variables accounted for most of the variability in water transparency for the different seasons and the period March–October as a whole (c. 80%). We were able to demonstrate a significant relationship between total nitrogen and Secchi depth, with important implications for management purposes.  相似文献   

6.
Seasonal succession and composition of both attached and free-living bacterial communities were studied in subtropical estuarine and coastal waters with contrasting hydrographic conditions. A higher abundance of attached bacteria was recovered in the estuarine waters containing high concentrations of dissolved organic carbon (DOC) resulting from the freshwater discharge in the adjacent Pearl River, and Proteobacteria, including ??-, ??-, and ??-groups, predominated the attached community at both stations. Free-living bacterial communities at both stations showed higher diversity and lower seasonality than their attached counterparts, and ??-Proteobacteria accounted for the highest proportion at both stations. Redundancy analysis (RDA) demonstrated that, in addition to the obvious temperature effects, DOC and microphytoplankton (>20???m Chl a) drive the temporal variation of attached bacteria at the estuarine and coastal stations, respectively. On the other hand, picophytoplankton (<2???m Chl a) and dissolved oxygen concentration explained most of the free-living bacterial community succession at the estuarine station, while those at the coastal station were associated with micro- and picoplankton (Chl a fractions of <2 and >20???m). These findings suggest that temperature and bottom?Cup effects play a more important role for the spatial?Ctemporal variations of both attached and free-living bacterial communities in the subtropical estuarine and coastal waters.  相似文献   

7.
The fate of dissolved material delivered to the coastal ocean depends on its reactivity and the rate at which it is mixed offshore. To measure the rate of exchange of coastal waters, we employ two short-lived radium isotopes,223Ra and224Ra. Along the coast of South Carolina, shore-perpendicular profiles of223Ra and224Ra in surface waters show consistent gradients which may be modeled to yield eddy diffusion coefficients of 350–540 m2s−1. Coupling the exchange rate with offshore concentration gradients yields estimates of offshore fluxes of dissolved materials. For systems in steady state, the offshore fluxes must be balanced by new inputs from rivers, groundwater, sewers or other sources. Two tracers that show promise in evaluating groundwater input are barium and226Ra. These tracers have high relative concentrations in the fluids and low-reactivity in the coastal ocean. Applying the eddy diffusion coefficients to the offshore gradient of226Ra concentration provides an estimate of the offshore flux of226Ra. Measuring the concentrations of226Ra in subsurface fluids provides an estimate of the fluid flux necessary to provide the226Ra. These estimates indicate that the volume of groundwater required to support these fluxes is of the order of 40% of the surface water flow.  相似文献   

8.
Manganese has been measured in size-fractionated paniculate matter profiles obtained by large volume in situ filtration of the upper 1000 m of the N.W. Atlantic as part of the Warm Core Rings Experiment (WCRE) in 1982. Environments sampled included Warm Core Rings (WCR) 82B and 82H, the entrainment zone at the edge of these rings, the Slope Water surrounding rings, and the Gulf Stream (GS) and Sargasso Sea (SS) from which the rings formed.Manganese concentrations ranged from 10 pmol kg−1 to 10,000 pmol kg−1 with the extreme values observed in the quasi-isolated core waters of WCR 82B and in a tongue of shelf water at the periphery of WCR 82B, respectively. The majority of the Mn was in the 1–53 μm particle size fraction and most Mn was probably close to 1 μm in size. Mn showed no correlation with major biogenic phases indicating that formation by local biological processes was not an important source. Instead, most paniculate Mn present in the waters sampled originated in reducing sediments at the continental margin.A manganese budget for the quasi-isolated core waters of WCR 82B between February and June 1982 showed that most Mn removal was by the aggregation of the small Mn-oxyhydroxide particles into fecal material, followed by sedimentation.Calculations show that WCRs cause offshore particulate Mn transports from the continental margin between 66°W and Cape Hatteras of 8.5 × 104 to 14 × 104 mol d−1 with most derived from the continental shelf. Only 4% of the shelf derived Mn becomes entrained into WCRs and the rest is left to disperse in the Slope Water or enter the circulation of the Gulf Stream. The WCR-induced offshore Mn transports may account for a large fraction of the Mn flux to sediments on the continental slope and upper continental rise.  相似文献   

9.
Water column and seabed samples were obtained from 92 stations on the Amazon continental shelf during October of 1979. Uptake of silica near and southeast of the river mouth began at a salinity of 8%. and accounted for 17% of the riverine silica flux to this region. Uptake northwest of the river mouth began at a salinity of 20%. and resulted in 33% removal of the riverine silica flux. Examination of filtered suspended solids revealed abundant diatoms in the surface waters, including Coscinodiscus. Skeletonema, Synedra. and Thalassiosira. The biological uptake of silica appears to be dependent on three factors: turbidity, turbulence, and nutrient availability. There was no evidence of abiological removal of silica in the Amazon estuary. 75 to 88% of the silica removed from surface waters by diatoms dissolves prior to accumulation in the seabed. Based on the mean biogenic silica content of shelf sediment (0.25%) and estimates of rates of sediment accumulation, the biogenic silica accumulation rate on the shelf is 2 × 1012 g/yr, which represents only 4% of the dissolved silica supplied by the Amazon River. Biological uptake of silica in estuarine surface waters may not accurately reflect permanent removal of biogenic silica to the seabed because of dissolution which occurs in bottom waters and near the sediment-water interface.  相似文献   

10.
Surveys were conducted in April and June 1995 to quantify the uptake of dissolved nutrients in a highly turbid estuary (the Humber, United Kingdom) and to determine the factors controlling nutrient uptake rates. A combination of isotope labelling methods were used in conjunction with on-deck incubation techniques to estimate the uptake of dissolved nutrients (PO4 3?, NH4 +, NO3 ?, and urea) in surface samples collected from coastal waters. Similarly, isotope labelling and laboratory incubgation techniques were employed to estimate dissolved nitrogen uptake (NH4 +, NO3 ?, and urea) in surface samples collected from the estuary mouth. Nutrient uptake rates were at the low end of ranges for coastal and estuarine environments reported in the literature. Concentrations of chlorophyll and the availability of photosynthetically active radiation were identified as potentially important factors controlling the uptake rates of nutrients. Uptake rates of dissolved nitrogen in the Humber mouth appeared to be related to the location of smapling sites. Depletion rates of dissolved nutrients in situ were estimated on the basis of integrated water column nutrient uptake rates and indicated assimilation of up to 16% of nutrients in the entire water column. Estimated depletion rates did not indicate preferential loss of any of the nutrient species investigated.  相似文献   

11.
The spatial and temporal variations of the flux of CO2 were determined during 2007 in the Recife estuarine system (RES), a tropical estuary that receives anthropogenic loads from one of the most populated and industrialized areas of the Brazilian coast. The RES acts as a source of nutrients (N and P) for coastal waters. The calculated CO2 fluxes indicate that the upstream inputs of CO2 from the rivers are largely responsible for the net annual CO2 emission to the atmosphere of +30 to +48 mmol m?2 day?1, depending on the CO2 exchange calculation used, which mainly occurs during the late austral winter and early summer. The observed inverse relationship between the CO2 flux and the net ecosystem production (NEP) indicates the high heterotrophy of the system (except for the months of November and December). The NEP varies between ?33 mmol m?2 day?1 in summer and ?246 mmol m?2 day?1 in winter. The pCO2 values were permanently high during the study period (average ~4,700 μatm) showing a gradient between the inner (12,900 μatm) and lower (389 μatm) sections on a path of approximately 30 km. This reflects a state of permanent pollution in the basin due to the upstream loading of untreated domestic effluents (N/P?=?1,367:6 μmol kg?1 and pH?=?6.9 in the inner section), resulting in the continuous mineralization of organic material by heterotrophic organisms and thereby increasing the dissolved CO2 in estuarine waters.  相似文献   

12.
Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 ?, Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ~12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m?2 year?1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ~7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ~0.52 mol m?2 year?1. With an estimated average organic carbon accumulation rate of ~5.6 (±0.5) mol m?2 year?1, it appears that the bulk of organic matter gets preserved in sediments in the study region.  相似文献   

13.
The factors which control concentrations of soluble inorganic phosphorus in the Amazon estuary are described and the efflux of phosphorus through the estuary is estimated using estuarine data collected on three field excursions (two in December, 1982 and one in May, 1983), and various laboratory mixing experiments. There is evidence to suggest that suspended sediments release significant quantities of inorganic phosphate to the estuarine waters. Bottom sediments collected from the estuary released soluble inorganic phosphorus at rates of approximately 0.2 μM day−1, when suspended in mixtures of seawater and deionized water. Release rates depended on salinity but were independent of sediment concentrations. Inputs of phosphate persisted for approximately 3 days in suspensions with sediment concentrations of 0.5 g l−1, but the duration of release increased to greater than 8 days at concentrations greater than 10 gl−1. A one-dimensional dispersion model was developed incorporating input rates derived from the laboratory mixing experiments. The model predicts phosphate concentrations which are consistent with field observations, and it provides quantitative estimates for total fluxes of soluble inorganic phosphorus to the high salinity fringes of the estuary (~25 ppt) of approximately 15 × 106molesday−1 and 27 × 106molesday−1 during December, 1982 and May, 1983 respectively. The data indicate a significant phosphate loss from estuarine waters at salinities from 0–4 ppt, possibly associated with iron and humate removal. More than 50% of the predicted flux could be contributed by phosphate released from suspended sediments within the turbid part of the estuary.  相似文献   

14.
Measurements of uptake rates of inorganic (NO3 and NH4+) and organic (urea, glycine, and glutamic acid) N, and indirect estimates of total N uptake by bacteria, were made in four contrasting environments in sub-tropical Hong Kong waters in summer of 2008. In addition, the effects of several days of rain on N uptake rates were studied in eastern waters. Although ambient NO3 was the dominant form of N in Hong Kong waters, the dominant N form taken up by phytoplankton was usually NH4+ and organic N, including urea and amino acids, rather than NO3. Hence, because of the low NO3 uptake, there was a long turnover time for NO3 (100 days), and most of the NO3 was apparently transported offshore into deeper shelf waters. In eastern waters where NH4+ was undetectable, NO3 uptake rates were positively correlated with phytoplankton cell size. In contrast, potential rates of glutamic acid uptake were negatively correlated with phytoplankton size. N uptake rates in the smaller size fraction (0.7–2.8 μm) were less affected by the rain event, and smaller phytoplankton appeared to outcompete larger cells after several days of rain. The surface (PN)-specific N uptake rates in the >8-μm fraction decreased from 0.02 to 0.0001 h−1, while the smaller fraction only exhibited a one- to threefold decrease after the rainfall. In contrast, bacterial production and N uptake were not affected by the rain event, and bacteria N uptake accounted for 10–60% of the total N uptake by phytoplankton.  相似文献   

15.
The concentrations and physico-chemical states of 210Pb have been measured in Bikini Atoll and Washington State coastal waters, and 210Po in Washington coastal waters. Lead-210 concentrations of 113–133 dpm · m?3 were found in surface water collections near Bikini Atoll and 29–153 dpm · m?3 in Bikini Lagoon. The concentrations of 210Pb in near Bikini and in Washington State waters increased with depth in the upper 150m at a rate of 0.35–0.45dpm·m?3 · m?1. In the North Equatorial Current waters near Bikini Atoll 210Pb was found associated predominantly with the soluble (colloidal) fraction, but in Washington coastal waters 210Pb and 210Po were found associated with the paniculate (> 0.3 μm) fraction. The mean residence times of 210Pb, calculated from the atmospheric input to marine waters from precipitation and the concentrations measured in surface water, were consistent with the physico-chemical states of 210Pb found in samples collected in deep ocean and coastal waters. Approximate values of the mean residence times were calculated, for the upper 50 m, to be as follows: 58 days in the Strait of Juan de Fuca, 128 days at the 5-mile (8 km) station off Cape Flattery (Washington), 163 days at the 12-mile (19 km) station off Cape Flattery, and 2.6 yr near Bikini Atoll. It appears that 210Pb and 210Po can be used to trace particle removal rates in the upper layers of marine waters.  相似文献   

16.
Fossil ostracod assemblages were investigated in five AMS 14 C‐dated cores from various water depths of the Laptev and Kara seas ranging from the upper continental slope (270 m) to the present‐day shelf depth (40 m). Six fossil assemblages were distinguished. These represent the varying environmental conditions at the North Siberian continental margin since about 18 ka. In the cores from the shelf the ostracod assemblages reflect the gradual transition from an estuarine brackish‐water environment to modern marine conditions since 12.3 ka, as induced by the regional early Holocene transgression. The core from the upper continental slope dates back to c. 17.6 ka and contains assemblages that are absent in the shelf cores. The assemblage older than 10 ka stands out as a specific community dominated by relatively deep‐water Arctic and North Atlantic species that also contains euryhaline species. Such an assemblage provides evidence for past inflows of Atlantic‐derived waters from as early as c. 17.2 ka, probably facilitated by upwelling in coastal polynyas, and a considerable riverine freshwater influence with enhanced surface water stratification owing to the proximity of the palaeocoastline until early Holocene times. In all studied cores, relative increases in euryhaline species dominant in the inner‐shelf regions are recorded in the mid–late Holocene sediments (<7 ka), which otherwise already contain modern‐like ostracod assemblages with relatively deep‐water species. This observation suggests euryhaline species to be largely sea‐ice‐ and/or iceberg‐rafted and therefore may provide evidence for a climate cooling trend.  相似文献   

17.
The Pomeranian Bay is a coastal region fed by the Oder River, one of the seven largest Baltic rivers, whose waters flow through a large and complex estuarine system before entering the bay. Nutrients (NO3 , NO2 , NH4 +, Ntot, PO4 3−, Ptot, DSi), chlorophylla concentrations, oxygen content, salinity, and temperature were measured in the Pomeranian Bay in nine seasonally distributed cruises during 1993–1997. Strong spatial and temporal patterns were observed and they were governed by: the seasonally variable riverine water-nutrient discharges, the seasonally variable uptake of nutrients and their cycling in the river estuary and the Bay, the character of water exchange between the Pomeranian Bay and the Szczecin Lagoon, and the water flow patterns in the Bay that are dominated by wind-driven circulation. Easterly winds resulted in water and nutrient transport along the German coastline, while westerly winds confined the nutrient rich riverine waters to the Polish coast and transported them eastward beyond the study area. Two water masses, coastal and open, characterized by different chemical and physical parameters and chla content were found in the Bay independently of the season. The role of the Oder estuary in nutrient transformation, as well as the role of temperature in transformation processes is stressed in the paper. The DIN:DIP:DSi ratio indicated that phosphorus most probably played a limiting role in phytoplankton production in the Bay in spring, while nitrogen did the same in summer. During the spring bloom, predominated by diatoms, the DSi:DIN ratio dropped to 0.1 in the coastal waters and to 0.6 in the open bay waters, pointing to silicon limitation of diatom growth, similar to what is being observed in other Baltic regions.  相似文献   

18.
We analyzed responses of soluble reactive phosphorus (SRP), bioavailable phosphate (PO4), particulate phosphorus, turnover time of orthophosphate (Tt), and alkaline phosphatase activity (APA) to varying degrees of nutrient stress. The nutrient stress was evoked by different treatments in concentration and combination of inorganic nitrogen (N) and phosphorus (P), and labile organic carbon (glucose) to mesocosms in experiments carried out in eutrophic southern (Odense Fjord, Denmark) and northern (Tvärminne Archipelago, Finland) coastal zones of the Baltic Sea. Despite seasonal and geographical differences, similar responses were observed in both experiments. Low SRP (<100 nmol l?1), shortT t (<10 h), and increased levels of APA were observed in both N+P balanced and P deficient treatments, while the opposite trend was observed in P replete treatments. The shortestT t and the highest APA were found when glucose was combined with N treatment. Bioavailable PO4 was estimated usingT t and P uptake rates as derived from stoichiometric conversion of carbon based primary and bacterial production. With shorterT t, the PO4 pool declined to <1 nmol-P l?1, whereas the SRP background pool (difference between SRP and PO4) remained relatively constant (c. 50 nmol l?1). APA was inversely related to PO4 but not to SRP. Responses of specific APA and specific affinity for PO4 uptake, which are APA and PO4 uptake rates (inverse ofT t), respectively, normalized to the summed P biomass of phytoplankton and bacteria, responded consistently to the pattern and magnitude of nutrient limitation evoked in our experiments. Our results, together with a literature survey, suggest that both parameters can be useful in examining PO4 availability for the natural phytoplankton and bacteria community in P starved aquatic systems.  相似文献   

19.
Nearshore waters to a depth of 200 m constitute only 0.2% of the volume of the world's oceans, but they receive and process 25% of the oceans' input of organic carbon, between 6 and 7 × 1015 g C per year. Man's activities during the past century have significantly increased both the supply of nutrients from land to coastal waters and the total sediment load carried by rivers and deposited in nearshore waters. The combination of increased primary productivity, due to increased supply of nutrients, and increased burial of organic matter, due to increased sedimentation, could sequester a significant fraction of the carbon released into the atmosphere by man as organic carbon in recent shallow-water sediments.  相似文献   

20.
Samples collected in December 1990 and July 1991 show that dissolved Cd, Cu, Ni, and Zn distributions in the Gulf of the Farallones are dominated by mixing of two end-members: (1) metal-enriched San Francisco Bay water and (2) offshore California Current water. The range of dissolved metal concentrations observed is 0.2–0.9 nmol kg?1 for Cd, 1–20 nmol kg?1 for Cu, 4–16 nmol kg?1 for Ni, and 0.2–20 nmol kg?1 for Zn. Effective concentrations in fresh water discharged into San Francisco Bay during 1990–1991 (estimated by extrapolation to zero salinity) are 740–860 μmol kg?1 for silicate, 21–44 μmol kg?1 for phosphate, 10–15 nmol kg?1 for Cd, 210–450 nmol kg?1 for Cu, 210–270 nmol kg?1 for Ni, and 190–390 nmol kg?1 for Zn. Comparison with effective trace metal and nutrient concentrations for freshwater discharge reported by Flegal et al. (1991) shows that input of these constituents to the northern reaches of San Francisco Bay accounts for only a fraction of the input to Gulf of the Farallones from the estuary system as a whole. The nutrient and trace metal composition of shelf water outside a 30-km radius from the mouth of the estuary closely resembles that of California Current water further offshore. In contrast to coastal waters elsewhere, there is little evidence of Cd, Cu, Ni, and Zn input by sediment diagenesis in continental shelf waters of California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号