首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine microbes are major drivers of marine biogeochemical cycles and play critical roles in the ecosystems. Aerobic anoxygenic phototrophic bacteria(AAPB) are an important bacterial functional group with capability of harvesting light energy and wide distribution, and appear to have a particular role in the ocean's carbon cycling. Yet the global pattern of AAPB distribution was controversial at the beginning of the 21 st century due to the defects of the AAPB enumeration methods. An advanced time-series observation-based infrared epifluorescence microscopy(TIREM) approach was established to amend the existing AAPB quantitative deviation and led to the accurate enumeration of AAPB in marine environments. The abundance of AAPB and AAPB% were higher in coastal and continental shelf waters than in oceanic waters, which does not support the idea that AAPB are specifically adapted to oligotrophic conditions due to photosynthesis in AAPB acting a supplement to their organic carbon respiration. Further investigation revealed that dependence of AAPB on dissolved organic carbon produced by phytoplankton(PDOC) may limit their competition and control AAPB distribution. So, the selection of carbon sources by AAPB indicated that they can effectively fractionate the carbon flow in the sea. Enlightened by these findings, the following studies on the interactions between marine microbes and DOC led to the discovery of a new mechanism of marine carbon sequestration—the Microbial Carbon Pump(MCP). The conceptual framework of MCP addresses the sources and mechanism of the vast DOC reservoir in the ocean and represents a breakthrough in the theory of ocean carbon sequestration.  相似文献   

2.
The largest global carbon-cycle perturbation in Earth history was recorded in the Ediacaran—a persistent negative shift in the global marine dissolved inorganic carbon(DIC) reservoir that lasted for ~25–50 million years, with a nadir of –12‰(i.e.,the Shuram Excursion, or SE). This event is considered to have been a result of full or partial oxidation of a large dissolved organic carbon(DOC) reservoir, which, if correct, provides evidence for massive DOC storage in the Ediacaran ocean owing to an intensive microbial carbon pump(MCP). However, this scenario was recently challenged by new hypotheses that relate the SE to oxidization of recycled continentally derived organic carbon or hydrocarbons from marine seeps. In order to test these competing hypotheses,this paper numerically simulates changes in global carbon cycle fluxes and isotopic compositions during the SE, revealing that:(1) given oxygen levels in the Ediacaran atmosphere-ocean of ≤40% PAL, the recycled continental organic carbon hypothesis and the full oxidation of oceanic DOC reservoir hypothesis are challenged by the atmospheric oxygen availability which would have been depleted in 4 and 6 million years, respectively;(2) the marine-seep hydrocarbon oxidation hypothesis is challenged by the exceedingly large hydrocarbon fluxes required to sustain the SE for 25 Myr; and(3) the heterogeneous(partial) DOC oxidation hypothesis is quantitatively able to account for the SE because the total amount of oxidants needed for partial oxidation(50%)of the global DOC reservoir could have been met.  相似文献   

3.
The total organic carbon(TOC)in the marine source rock of the Ordos Basin mostly ranges from 0.2%to 0.5%.The industrial standard commonly states that the TOC value has to be no less than 0.5%(0.4%for high mature or over-mature source rock)to form large petroleum reservoirs.However,gas source correlation indicates that the natural gas in the Jingbian gas field does receive contribution from marine source rocks.In order to determine the effect of carboxylate salts(or called as organic acid salts)on TOC in highly mature source rocks with low TOC value,we sampled the Ordovician marine source rock and the Permian transitional facies source rock in one drilled well in the southern Ordos Basin and performed infrared and GC-MS analysis.It is found that both kerogen-derived organic acids and carboxylate salt-conversed organic acids exist in both marine and transitional facies source rocks.The carboxylate salt-conversed organic acids mainly come from the complete acidification of carboxylate salts,which confirms the presence of carboxylate salts in the marine source rocks.Although the C16:O peak is the main peak for the organic acids both before and after acidification,the carboxylate salt-conversed organic acids have much less relative abundance ahead of C16:O compared with that of the kerogen-based and free organic acids.This observation suggests that the kerogen-based and free organic acids mainly decarboxylate to form lower carboxylic acids,whereas the carboxylate salt-conversed organic acids mainly break down into paraffins.By using calcium hexadecanoate as the reference to quantify the kerogen-derived and carboxylate salt-conversed organic acids,the high TOC(>2.0%)marine source rocks have low carboxylate salt content and the low TOC(0.2%–0.5%)marine source rocks contain high content of carboxylate salt.Therefore,for the marine source rocks with 0.2%–0.5%TOC,the carboxylate salts may be a potential gas source at high maturity stage.  相似文献   

4.
Mineralogical and textural characteristics and organic carbon composition of the carbonate concretions from the upper Doushantuo Formation (ca. 551 Ma) in the eastern Yangtze Gorge area reveal their early diagenetic (shallow) growth in organic-rich shale. High organic carbon content (up to 10%) and abundance of framboidal pyrites in the hosting shale suggest an anoxic or euxinic depositional environment. Well-preserved cardhouse clay fabrics in the concretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Rock pyrolysis analyses show that the carbonate concretions have lower total organic carbon (TOC) content but higher effective carbon than those in the host rocks. This may be caused by enclosed organic matter in pores of the concretions so that organic matter was protected from further modification during deep burial and maintained high hydrocarbon generating potential even in over-matured source rock. As a microbialite sensu latu, concretions have special growth conditions and may provide important information on the microbial activities in depositional and early burial environments.  相似文献   

5.
Chemical oxygen demand(COD)is widely used as an organic pollution indicator in wastewater treatment plants.Large amounts of organic matter are removed during treatment processes to meet environmental standards,and consequently,substantial greenhouse gases(GHGs)such as methane(CH4)are released.However,the COD indicator covers a great amount of refractory organic matter that is not a pollutant and could be a potential carbon sink.Here,we collected and analysed COD data from 86 worldwide municipal wastewater treatment plants(WWTPs)and applied a model published by the Intergovernmental Panel on Climate Change to estimate the emission of CH4 due to recalcitrant organic compound processing in China’s municipal wastewater treatment systems.Our results showed that the average contribution of refractory COD to total COD removal was55%in 86 WWTPs.The amount of CH4 released from the treatment of recalcitrant organic matter in 2018 could have been as high as 38.22 million tons of carbon dioxide equivalent,which amounts to the annual carbon sequestered by China’s wetlands.This suggests that the use of COD as an indicator for organic pollution is undue and needs to be revised to reduce the emission of GHG.In fact,leaving nontoxic recalcitrant organic matter in the wastewater may create a significant carbon sink and will save energy during the treatment process,aiming at carbon neutrality in the wastewater treatment industry.  相似文献   

6.
The Chihsia Formation is one of the four sets of regional marine hydrocarbon source rocks from South China.In the past two decades,detailed geochemical and sedimentological studies have been carried out to investigate its origination,which have demonstrated that the high primary productivity plays a primary role in the deposition of sediments enriched in the organic matter.However,the mechanism of this high productivity and the path of the deposition and burial of the organic matter have always been a mystery.Based on the previous studies on the Shangsi Section in Guangyuan City,Sichuan Province,we proposed that the development of the equatorial upwelling due to the sea level rise is responsible for the relatively high productivity in the Chihsia Formation.The sea waters with high nutrient were transported by the sub-surface currents along the equator.High organic carbon flux was deposited on the deeper shelf,and then decomposed by bacteria,leading to the occurrence of anaerobic respiration.The metabolism of the microorganisms consumed the dissolved oxygen in waters,which was in favor of the preservation of the organic matter.This suggested geobiological model integrating with paleoclimatology,paleoceanography and geomicrobiology will help us to understand the causes of this particular sedimentary sequence.  相似文献   

7.
Neogene eolian successions are one of the most important terrestrial palaeoenvironmental archives in East Asia.However, they have received far less attention than Quaternary loess deposits, especially in the case of lipid biomarker analysis.In order to obtain a better insight into the early-middle Miocene palaeoenvironment, we conducted a study of n-alkane biomarkers from sediments of the QA-I section(Qinan) in the western Chinese Loess Plateau, and compared the results with those of previous n-alkane analyses of eolian and aquatic sediments of varying age. Our principal results are as follows:(1) All QA-I samples contain n-alkanes ranging from C_(14) to C_(35), among which the relative content of short-chain n-alkanes(C_(14)–C_(20)) from microorganisms is significantly greater than that of long-chain n-alkanes(C_(26)–C_(35)) from the waxes of terrestrial higher plants;the main peak is at C_(16)–C_(18). All samples have a relatively lower abundance of medium-chain n-alkanes(C_(21)–C_(25)) than that of long-and short-chain n-alkanes, similar to strongly weathered palaeosols in Quaternary loess and Late Miocene-Pliocene Hipparion Red-Earth; however, this distribution is significantly different from that in weakly-weathered loess of Quaternary loess and Late Miocene-Pliocene Hipparion Red-Earth, as well as from aquatic sediments.(2) Despite some odd-over-even carbon predominance of long-chain n-alkanes in the QA-I samples, the carbon preference index(CPI) values are significantly lower than those of most of the weakly-weathered sediments. Our results show that strong weathering and microbial processes have significantly altered the n-alkanes in the Miocene eolian deposits in Qinan, and led to a significant oxidation and degradation of long-chain n-alkanes and the predominance of short-chain n-alkanes from bacteria. Therefore, the contribution of microorganism to total organic carbon(TOC) and its resulting in carbon isotopic composition should be carefully assessed in future studies.  相似文献   

8.
Natural gases discovered up to now in Lishui Sag,the East China Sea Basin,differ greatly in gaseous compositions,of which hydrocarbon gases amount to 2%―94%while non-hydrocarbon gases are dominated by CO2.Their hydrocarbon gases,without exception,contain less than 90%of methane and over 10%of C2 heavier hydrocarbons,indicating a wet gas.Carbon isotopic analyses on these hydrocarbon gases showed thatδ13C 1 ,δ13C 2 andδ13C 3 are basically lighter than-44‰,-29‰and-26‰, respectively.The difference in carbon isotopic values between methane and ethane is great,suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation.δ13C CO2 values of nonhydrocarbon gases are all heavier than-10‰,indicating a typical abiogenic gas.The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit,consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter.Moreover, δ13C 1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit whileδ13C 2 andδ13C 3 values of the former are over 9‰heavier than those of the latter.Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag,where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter,therefore,natural gases in the LS36-1 oil-gas pool are mainly derived from the Yueguifeng Formation lacustrine source rock rather than the Lingfeng Formation marine or Mingyuefeng Formation coal-measures source rocks.  相似文献   

9.
In the aggressive marine environment over a long-term service period,coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity.This paper investigates the strength reduction of coastal bridges,especially focusing on the effects of non-uniform corrosion along the height of bridge piers.First,the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments.To investigate the various damage modes of the concrete cover,a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment.Second,the shear strength of these aging structures is analyzed.Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover.Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures’service time is assumed to be the same.  相似文献   

10.
The deep ocean piezosphere accounts for a significant part of the global ocean,hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle.The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean.However,there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production,transformation,degradation,and export of marine dissolved and particulate organic matter(DOM and POM)in the deep ocean and the ecological consequence.Here we propose the POM-DOM piezophilic microorganism continuum(PDPMC)conceptual model,to address these important biogeochemical processes in the deep ocean.We propose that piezophilic microorganisms(bacteria and archaea)play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes,enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter,and serve as the primary driver for carbon cycle in the deep ocean.  相似文献   

11.
The large organic matter flow in tropical coastal areas is recognized as an important process in the global carbon(C)cycle.However,the nature of organic matter flow in semi-enclosed tropical estuaries remains unclear due to the various environmental processes(tidal change,river flow,waves from the sea,and internal circulation)and organic matter sources therein.Thus,sediment organic matter(SOM)sources,and their distribution pattern,are key to understanding ecosystem material flow.Our research in the Batan Bay Estuary,Philippines,a semi-enclosed estuary under large mangrove deforestation,was conducted to determine ecosystem properties through analysis of C and nitrogen stable isotope ratios and environmental factors.First,we determined that mangrove litter,microphytobenthos,and phytoplankton are the main SOM sources in the Batan Bay Estuary.Second,the estuary was classified into three ecological zones(the Bay zone,Back-barrier zone,and River zone).In addition,we estimated SOM source ratios using the Stable Isotope Analysis in R package and determined different organic matter sources in different zone.The high ratios of mangrove litter as SOM indicate that a large amount of terrestrial plant organic matter remains despite the heavy mangrove deforestation that has occurred since the 1980s,and that the Back-barrier zone consists of a different type of ecosystem that promotes accumulation of C from mangrove litter and microphytobenthos.  相似文献   

12.
The significance of the various biogeochemical pathways that drive carbon cycling and the relative fractions of dissolved inorganic carbon(DIC) produced by these reactions within the sulfate-methane transition zone(SMTZ) are still being debated. Unraveling these processes is important to our understanding of the benthic DIC sources and their contributions to the global carbon cycle. Here, we measure pore water geochemistry(chlorine, sulfate, methane, Ca~(2+), Mg~(2+), DIC and δ~(13)C-DIC) as well as solid geochemistry(sedimentary organic carbon(SOC) and δ~(13)C of SOC) in nearshore sediments from Qi'ao Island in the Pearl River Estuary of the Southern China Sea. Our analysis indicates that SOC originates from the mixing of carbon from terrestrial and marine sources, and that terrestrial materials dominate the net loss of SOC during the degradation of organic matter, especially at sites located near the river outlets. Sulfate reduction via SOC degradation is not appreciable in the upper sediment layer due to conservative mixing-dilution by freshwater. However, below this layer, the anaerobic oxidation of methane(AOM) and methanogenesis occur. Within the SMTZ, the δ~(13)C mass balance shows that the proportions of DIC derived from organoclastic SO_4~(2-) reduction(OSR) and AOM are 50.3% to 66.7% and 0.1% to 17.9%, respectively, whereas methanogenesis contributes 17.0% to 43.9%. This study reveals that the upward diffusion of DIC from ongoing methanogenesis significantly influences carbon cycling within the SMTZ in these estuarine sediments. As a result, we suggest that the plots of the ratio of change in sulfate to change in DIC in pore water should be used with caution when discriminating between sulfate reduction pathways in methane-rich sediments.  相似文献   

13.
The South China Sea(SCS)is the largest semi-enclosed marginal sea in the western Pacific.The alternation of East Asian monsoon causes a significant seasonal pattern of chlorophyll,primary productivity,and export flux of sinking particles.However,the source and sink of dissolved organic carbon(DOC)pools with different bioavailability are less studied.Here we evaluated the seasonal production of DOC in labile,semi-labile and refractory forms using a coupled physical-biogeochemical model.This study aims to understand the dynamics and budgets of organic matters in the SCS.Model results show that the production of labile,semi-labile and refractory DOC is highly correlated with the net primary productivity(NPP)which is higher in winter and lower in summer,reflecting a dependence of DOC on the NPP.The seasonal variation in Pearl River discharge dominates the DOC production in the northern coastal region.In the northeast,the Kuroshio intrusion associated frontal system is attributed to cause high winter production.The DOC production in the southwest is controlled by both winter mixing and summer upwelling.The production of refractory DOC with the least bioavailability favors carbon sequestration.Its annual mean production is 1.8±0.5 mg C m?2 d?1,equivalent to 26%of the export flux of particulate organic carbon at 1000 m.  相似文献   

14.
Organic carbon isotope(δ13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ13Corg values of the late Ediacaran Dengying Formation range from -29‰ to -24‰. In the deep-water Longbizui section, δ13Corg values from time-equivalent strata of the Dengying Formation are mostly between –35‰ and -32‰. These new data, in combination with δ13Corg data reported from other sections in South China, reveal a 6‰–8‰ shallow-to-deep water δ13Corg gradient. High δ13Corg values(-30‰) occur mostly in shallow-water carbonate rocks, whereas low δ13Corg values(-32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ13Corg variations imply limited buffering effect from a large dissolved organic carbon(DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ13Corg values(-30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ13Corg data and may record the isotope signature of organic matter from primary(photosynthetic) production. In contrast, low δ13Corg values(-32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.  相似文献   

15.
Many studies on global climate have forecast major changes in the amounts and spatial patterns of precipitation that may significantly affect temperate grasslands in arid and semi-arid regions. As a part of ChinaFLUX, eddy covariance flux measurements were made at a semi-arid Leymus chinensis steppe in Inner Mongolia, China during 2003-2004 to quantify the response of carbon exchange to environmental changes. Results showed that gross ecosystem production (FGEP) and ecosystem respiration (Reco) of the steppe were significantly depressed by water stress due to lack of precipitation during the growing season. Temperature was the dominant factor affecting FGEP and Reco in 2003, whereas soil moisture imposed a significant influence on both Reco and FGEP in 2004. Under wet conditions, Reco showed an exponentially increasing trend with temperature (Q10 = 2.0), but an apparent reduction in the value of Reco and its temperature sensitivity were observed during the periods of water stress (Q10=1.6). Both heat and water stress can cause decrease in FGEP. The sea-sonality of ecosystem carbon exchange was strongly correlated with the variation of precipitation. With less precipitation in 2003, the steppe sequestrated carbon in June and July, and went into a senescence in early August due to water stress. As compared to 2003, the severe drought during the spring of 2004 delayed the growth of the steppe until late June, and the steppe became a CO2 sink from early July until mid-September, with ample precipitation in August. The semi-arid steppe released a total of 9.7 g C·m-2 from May 16 to the end of September 2003, whereas the net carbon budget during the same period in 2004 was close to zero. Long-term measurements over various grasslands are needed to quantify carbon balance in temperate grasslands.  相似文献   

16.
The Ordos Basin,the second largest sedimentary basin in China,contains the broad distribution of natural gas types.So far,several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin,each having over 1000×10 8 m 3 of proven gas reserves,and several gas pools have also been discovered in the Mesozoic.This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs,and then discussed their origin.For hydrocarbons preserved in the Upper Paleozoic,the elevatedδ13C values of methane,ethane and propane indicate that the gases would be mainly coal-formed gases;the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity.In the Lower Paleozoic,theδ13C 1 values are mostly similar with those in the Upper Paleozoic,but theδ13C 2 andδ13C 3 values are slightly lighter,suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases.There are multiple reversals in carbon isotopes for gaseous alkanes,especially abnormal reversal for methane and ethane(i.e.δ13C 1 >δ13C 2 ),inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases.In the Mesozoic,the δ13Cvalues for gaseous alkanes are enriched in 12C,indicating that the gases are mainly derived from sapropelic sources;the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity.In contrast to the Upper Paleozoic gases,the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane,which may be caused by gases generated from different kerogen types. Finally,according toδ13C 1 -Ro relationship and extremely low total organic carbon contents,the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source,bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.  相似文献   

17.
The natural gas from the Triassic Feixianguan Formation of Northeast Sichuan Basin contains high H2S whereas relatively low CO2 concentrations and the CO2 display high δ13C values (ranging from -5.81‰ to 3.3‰ (PDB)). This seems to contradict the conventional wisdom that TSR should be a primary source of CO2 in natural gas from the Feixianguan Formation. In contrast, many authigenic calcite samples from these sites display very low δ13C values (ranging from -18.4‰ to -10.3‰ (PDB)). This suggests that the carbon from TSR source dominated the formation of calcite whereas the carbon from inorganic source came into CO2 in natural gas. In order to assess the origin of CO2 from these H2S-rich sites, we have calculated the relative contributions of organic and inorganic carbon sources to the CO2 and authigenic calcite. The organic carbon source possibly originated from TSR, whereas the inorganic one might be generated from marine carbonates dissolution. This calculation is based on the carbon isotopic compositions of CO2 and authigenic calcite as well as an isotopic mass balance. The results show that the contribution of organic carbon source to the CO2 is only 2%, whereas that to authigenic calcite is as high as 43% on average. Such results combined with thermodynamic evidence indicate that the isotopically light CO2 produced by TSR process may contribute to authigenic calcite precipitation during burial diagenesis. Distinguishable from Ordovician reservoir of Tarim Basin, Feixianguan reservoir of Northeast Sichuan Basin experienced rapid tectonic uplift due to Yanshanian movement after TSR occurred. Such tectonic event could induce temperature decrease and further promote carbonates dissolution. During these processes, secondary porosity has developed in Feixianguan carbonate reservoirs. Therefore, much attention should be paid to the structural highs in search of high quality carbonate reservoirs.  相似文献   

18.
Although 1-alkyl-2,3,6-trimethylbenzenes and a high relative amount of 1,2,3,4-tetramethylbenzene have been detected in marine oils and oil asphaltenes from Tabei uplift in the Tarim Basin, their bio-logical sources are not determined. This paper deals with the molecular characteristics of typical ma-rine oil asphaltenes from Tabei and Tazhong uplift in the Tarim Basin and the stable carbon isotopic signatures of individual compounds in the pyrolysates of these asphaltenes using flash pyrolysis-gas chromatograph-mass spectrometer (PY-GC-MS) and gas chromatograph-stable isotope ratio mass spectrometer (GC-C-IRMS), respectively. Relatively abundant 1,2,3,4-tetramethylbenzene is detected in the pyrolysates of these marine oil asphaltenes from the Tarim Basin. δ 13C values of 1,2,3,4-tetrame-thylbenzene in the pyrolysates of oil asphaltenes vary from-19.6‰ to-24.0‰, while those of n-alkanes in the pyrolysates show a range from-33.2‰ to-35.1‰. The 1,2,3,4-tetramethylbenzene in the pyro-lysates of oil asphaltenes proves to be significantly enriched in 13C relative to n-alkanes in the pyro-lysates and oil asphaltenes by 10.8‰―15.2‰ and 8.4‰―13.4‰, respectively. This result indicates a contribution from photosynthetic green sulfur bacteria Chlorobiaceae to relatively abundant 1,2,3,4-tetramethylbenzene in marine oil asphaltenes from the Tarim Basin. Hence, it can be speculated that the source of most marine oil asphaltenes from the Tarim Basin was formed in a strongly reducing water body enriched in H2S under euxinic conditions.  相似文献   

19.
The continent is the second largest carbon sink on Earth’s surface.With the diversification of vascular land plants in the late Paleozoic,terrestrial organic carbon burial is represented by massive coal formation,while the development of soil profiles would account for both organic and inorganic carbon burial.As compared with soil organic carbon,inorganic carbon burial,collectively known as the soil carbonate,would have a greater impact on the long-term carbon cycle.Soil carbonate would have multiple carbon sources,including dissolution of host calcareous rocks,dissolved inorganic carbon from freshwater,and oxidation of organic matter,but the host calcareous rock dissolution would not cause atmospheric CO2drawdown.Thus,to evaluate the potential effect of soil carbonate formation on the atmospheric p CO2level,different carbon sources of soil carbonate should be quantitatively differentiated.In this study,we analyzed the carbon and magnesium isotopes of pedogenic calcite veins developed in a heavily weathered outcrop,consisting of limestone of the early Paleogene Guanzhuang Group in North China.Based on the C and Mg isotope data,we developed a numerical model to quantify the carbon source of calcite veins.The modeling results indicate that4–37 wt%of carbon in these calcite veins was derived from atmospheric CO2.The low contribution from atmospheric CO2might be attributed to the host limestone that might have diluted the atmospheric CO2sink.Nevertheless,taking this value into consideration,it is estimated that soil carbonate formation would lower 1 ppm atmospheric CO2within 2000 years,i.e.,soil carbonate alone would sequester all atmospheric CO2within 1 million years.Finally,our study suggests the C–Mg isotope system might be a better tool in quantifying the carbon source of soil carbonate.  相似文献   

20.
Mercury(Hg) is well known as one of the most toxic elements to man.The coastal environments adjacent to industrial areas are reported to often be contaminated with mercury.Mercury becomes more toxic in the form of methylmercury(Me-Hg) which is converted from inorganic mercury in aqueous systems by microbial activity and can bio-magnify through the food chain.A simple method for the determination of total mercury and methylmercury in sediments was optimized by slightly modifying an old method using the direct mercury analyzer technique.Core sediment samples from Thane Creek,Mumbai,India were collected and analysed for total mercury and methylmercury.The Hg concentration in the creek varied between 0.54 to 16.03 μg g~(-1) while Me-Hg concentrations ranged between0.04 to 1.07 μg g~(-1).In surface sediment,mercury concentrations ranged from 4.33 μg g~(-1) to 12.16μg g~(-1).Total organic carbon content was found to be around 2 percent in different layers of the sediments.The enrichment factors,which indicate the extent of pollution in sediments,were estimated to range from 26 to 50 at different locations in the creek.Lithogenic and anthropogenic concentrations of mercury in the creek were also determined to compare the impact of anthropogenic and natural sources.Anthropogenic inventories were about 5-70 times more in concentration than the lithogenic in the different core sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号