首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radium isotopes (223Ra, 224Ra, 226Ra, and 228Ra) and water chemistry were used to identify two chemically distinct sources of submarine groundwater discharge (SGD) in Celestún Lagoon, Yucatán, Mexico. Low salinity groundwater discharging from springs within the lagoon has previously been identified and extensively sampled for nutrient concentrations. However, a second type of groundwater discharging into the lagoon was detected during this study using radium isotope activity measurements. This second type of groundwater is characterized by moderate salinities (within the range of lagoon salinities) and very elevated radium activities in comparison to the low salinity groundwater, mixed lagoon water, and seawater. Further analysis showed that the two types of groundwater also have distinct chloride, strontium, and sulfate ratios, along with slightly different nutrient concentrations. Groundwater discharge occurs through large and small springs scattered throughout the lagoon, and both types of groundwater were detected discharging from one of the larger springs. The relative proportions of low salinity groundwater and brackish high radium groundwater varied over the tidal cycle. In order to better understand the relative contributions of each type of groundwater to the lagoon, a three end-member mixing model based on the distinct chemical and isotopic compositions of both types of groundwater and of seawater was used to estimate the distribution of each water type throughout the lagoon in different seasons. This study suggests that substantial groundwater discharge to the lagoon can occur during both dry and rainy seasons. The presence of two groundwater sources has implications for monitoring and protection of the Celestún Lagoon Biosphere Reserve, since the two sources may have different susceptibilities to anthropogenic contamination depending on their respective recharge area and recharge rates.  相似文献   

2.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

3.
Submarine groundwater discharge (SGD) to coastal southern Rhode Island was estimated from measurements of the naturally-occurring radioisotopes 226Ra (t1/2 = 1600 y) and 228Ra (t1/2 = 5.75 y). Surface water and porewater samples were collected quarterly in Winnapaug, Quonochontaug, Ninigret, Green Hill, and Pt. Judith–Potter Ponds, as well as nearly monthly in the surface water of Rhode Island Sound, from January 2002 to August 2003; additional porewater samples were collected in August 2005. Surface water activities ranged from 12–83 dpm 100 L− 1 (60 dpm = 1 Bq) and 21–256 dpm 100 L− 1 for 226Ra and 228Ra, respectively. Porewater 226Ra activities ranged from 16–736 dpm 100 L− 1 (2002–2003) and 95–815 dpm 100 L− 1 (2005), while porewater 228Ra activities ranged from 23–1265 dpm 100 L− 1. Combining these data with a simple box model provided average 226Ra-based submarine groundwater fluxes ranging from 11–159 L m− 2 d− 1 and average 228Ra-derived fluxes of 15–259 L m− 2 d− 1. Seasonal changes in Ra-derived SGD were apparent in all ponds as well as between ponds, with SGD values of 30–472 L m− 2 d− 1 (Winnapaug Pond), 6–20 L m− 2 d− 1 (Quonochontaug Pond), 36–273 L m− 2 d− 1 (Ninigret Pond), 29–76 L m− 2 d− 1 (Green Hill Pond), and 19–83 L m− 2 d− 1 (Pt. Judith–Potter Pond). These Ra-derived fluxes are up to two orders of magnitude higher than results predicted by a numerical model of groundwater flow, estimates of aquifer recharge for the study period, and values published in previous Ra-based SGD studies in Rhode Island. This disparity may result from differences in the type of flow (recirculated seawater versus fresh groundwater) determined using each technique, as well as variability in porewater Ra activity.  相似文献   

4.
In order to estimate submarine groundwater discharge (SGD) and SGD-driven nutrient fluxes, we measured the concentrations of nutrients, 224Ra, and 226Ra in seawater, river water, and coastal groundwater of Yeongil Bay (in the southeastern coast of Korea) in August 2004 and February 2005. The bottom sediments over the shallow areas of this bay are composed mainly of coarse sands. Large excess concentrations of 224Ra, 226Ra, and Si supplied from SGD were observed in August 2004, while these excess concentrations were not apparent in February 2005. Based on the mass balance for 224Ra, 226Ra, and Si, which showed conservative mixing behavior in seawater, SGD was estimated to be approximately 6 × 106 m3 day− 1 (seepage rate = 0.2 m day− 1) in shallow areas (< 9 m water depth) in August 2004, which is much higher than the SGD level typically found in other coastal regions worldwide. During the summer period, SGD-driven nutrients in this bay contributed approximately 98%, 12%, and 76% of the total inputs for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively. Our study implies that the ecosystem in this highly permeable bed coastal zone is influenced strongly by SGD during summer, while such influences are negligible in winter.  相似文献   

5.
There is increasing evidence that submarine groundwater discharge (SGD) in many areas represents a major source of dissolved chemical constituents to the coastal ocean. In Great South Bay, NY, previous studies have shown that the discharge of nutrients with SGD may cause harmful algal blooms. This study estimates SGD to Great South Bay during August 2006 by performing a mass balance for each of the dissolved Ra isotopes (224Ra, 223Ra, 228Ra, 226Ra). The budget indicates a major unknown source (between 30 and 60% of the total input) of Ra to the bay. This imbalance can be resolved by a flux of Ra-enriched groundwater on the order of 3.5–4.5 × 109 L d− 1, depending on the Ra isotope. The Ra-estimated SGD rates compare well with those previously estimated by models of flow that decreases exponentially away from shore. Compared to previous reports of fresh groundwater discharge to the bay, the Ra-estimated discharge must comprise approximately 90% recirculated seawater. The good agreement between Ra- and model-estimated flow rates indicates that the primary SGD endmember may be best sampled at shallow depths in the sediments a short distance bayward of the low tide line.  相似文献   

6.
The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.  相似文献   

7.
The distributions of dissolved organic carbon (DOC), Ba, U, and a suite of naturally occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra) were studied during high- and low-discharge conditions in the Loxahatchee River estuary, Florida to examine the role of submarine groundwater discharge in estuarine transport. The fresh water endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface water (hyporheic) exchange. During both discharge conditions, Ba concentrations indicated slight non-conservative mixing. Such Ba excesses could be attributed either to submarine groundwater discharge or particle desorption processes. Estuarine dissolved organic carbon concentrations were highest at salinities closest to zero. Uranium distributions were lowest in the fresh water sites and mixed mostly conservatively with an increase in salinity. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L− 1) close to zero salinity and increased several-fold ( 18 mg L− 1; low discharge) toward the seaward endmember, which may be attributed to dynamic resuspension of bottom sediments within Jupiter Inlet.Surface water-column 222Rn activities were most elevated (> 28 dpm L− 1) at the freshwater endmember of the estuary and appear to identify regions of the river most influenced by the discharge of fresh groundwater. Activities of four naturally occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells yield mean estuarine water-mass transit times of less than 1 day; these values are in close agreement to those calculated by tidal prism and tidal frequency. Submarine groundwater discharge rates to the Loxahatchee River estuary were calculated using a tidal prism approach, an excess 226Ra mass balance, and an electromagnetic seepage meter. Average SGD rates ranged from 1.0 to 3.8 × 105 m3 d− 1 (20–74 L m− 2 d− 1), depending on river-discharge stage. Such calculated SGD estimates, which must include both a recirculated as well as fresh water component, are in close agreement with results obtained from a first-order watershed mass balance. Average submarine groundwater discharge rates yield NH4+ and PO4− 3 flux estimates to the Loxahatchee River estuary that range from 62.7 to 1063.1 and 69.2 to 378.5 μmol m− 2 d− 1, respectively, depending on river stage. SGD-derived nutrient flux rates are compared to yearly computed riverine total N and total P load estimates.  相似文献   

8.
9.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

10.
A mass balance for the naturally-occurring radium isotopes (224Ra, 223Ra, 228Ra, and 226Ra) in Jamaica Bay, NY, was conducted by directly estimating the individual Ra contributions of wastewater discharge, diffusion from fine-grained subtidal sediments, water percolation through marshes, desorption from resuspended particles, and water exchange at the inlet. The mass balance revealed a major unknown source term accounting for 19–71% of the total Ra input, which could only be resolved by invoking a source from submarine groundwater. Shallow (< 2 m depth) groundwater from permeable sediments in Jamaica Bay was brackish and enriched in Ra relative to surface bay waters by over two orders of magnitude. To balance Ra fluxes, a submarine groundwater input of 0.8 × 109–9.0 × 109 L d− 1 was required. This flux was similar for all four isotopes, with individual estimates varying by less than a factor of 2. Our calculated groundwater flux was 6- to 70-fold higher than the fresh groundwater discharge to the bay estimated by hydrological methods, but closely matched direct flow rates measured with seepage meters. This suggests that a substantial portion of the discharge consisted of recirculated seawater. The magnitude of submarine groundwater discharge varied seasonally, in the order: summer > autumn > spring. Chemical analyses suggest that the recirculated seawater component of submarine groundwater delivers as much dissolved nitrogen to the bay as the fresh groundwater flux.  相似文献   

11.
Submarine groundwater discharge (SGD) from seventeen sites was investigated on the coasts around Taiwan in order to verify its occurrences and to understand its characteristics. The fresh water fraction (FWF) in most pore water samples, except the Fangsan sampling site, range from 0 to 59% based on the salinity evidence. The relative low FWF evidence implies that the recirculated saline groundwater discharge (RSGD) is more important than the submarine fresh groundwater discharge (SFGD) in most sampling sites. Fangsan, which is located at the southwestern coast of Taiwan, has nearly 100% FWF in SGD. Evaluation of the relationship between the magnitude of SGD flux and geological type of the Taiwanese coast proves to be difficult because complex hydrological factors affect the SGD, rather than the coastal topography. According to the hydrological evidence, the modeled-SGD discharge is enhanced by high precipitation but is generally reduced by severe groundwater pumping. In addition, modeled-SGD has an inverse relationship with river base flow, indicating the river effect. The almost fresh SGD with flow rates ranged from 34 to 42 m/year at Fangsan deserves attention because a seven-year-long groundwater budget calculation implies that the aquifer could not supply so much fresh SGD over a large area. This suggests that a significant amount of fresh water SGD at Fangsan is derived from a point source via a fault passage, considering its geological background. Although the rudimentary salinity and stable isotope results indicate that RSGD plays an important role in SGD, the type of submarine spring discharge via fault zones may very well be the most prominent in highly deformed areas elsewhere in the world, too.  相似文献   

12.
基于223Ra和224Ra的桑沟湾海底地下水排放通量   总被引:1,自引:0,他引:1  
海底地下水排放(SGD)是陆地向海洋输送水量和营养物质的重要通道之一,对沿海物质通量及其生物地球化学循环有重要的影响,对生态环境起着不可忽视的作用。本文运用天然放射性同位素223Ra和224Ra示踪估算了我国北方典型养殖基地桑沟湾的海底地下水排放通量。结果表明,海底地下水样尤其是间隙水中Ra活度[224Ra=(968±31)dpm/(100 L),223Ra=(31.4±4.9)dpm/(100 L),n=9]远高于表层海水[224Ra=(38.7±2.0)dpm/(100 L),223Ra=(1.70±0.50)dpm/(100 L), n=21]。假设稳态条件下,考虑Ra的各源、汇项,利用Ra平衡模型,估算出桑沟湾SGD排放通量为(0.23~1.03)×107 m3/d。潮周期内的观测结果显示,涨潮时,水力梯度较小,SGD排放变弱,落潮时,水力梯度较大,导致了相对较多的SGD排放。在一个潮周期间,基于223Ra和224Ra得到的SGD排放通量平均为0.39×107 m3/d。潮汐动力下的SGD排放平均占总SGD排放的61%,因此桑沟湾沿岸的地下水排放主要受潮汐动力的影响,并对海水组成及海陆间物质交换有显著贡献。  相似文献   

13.
The southern portion of the Brazilian coast is dominated by coastal lagoons formed by sandy barrier spits with small inlets. This coastal configuration is a barrier to the surface flow of freshwater to the sea; thus, we suspect that a significant amount of freshwater flows through the permeable sands, beneath the barrier spits, where it mixes with seawater. We excavated an 18-m-deep well into the barrier spit which separates the Patos Lagoon from the South Atlantic. Using this well, we were able to sample interstitial waters from discrete layers, at 1-m intervals, which were analyzed for salinity, temperature, pH, nutrients (ammonium, nitrate, phosphate, and silicate), uranium, molybdenum, and barium. Similar analyses were made on surface water samples from the Patos Lagoon estuarine mixing zone.Results of well samples show a continuous increase in salinity with depth reaching 18 at the bottom. Ammonium and silicate are high, generally around 100 and 100–150 μM, respectively, throughout the subterranean profile. Phosphate shows a distinct maximum at about 6 m (ca. 25 μM), and nitrate is generally low in all well samples. Uranium and molybdenum exhibit a minimum in the well profile at about the same location where barium exhibits a maximum (greater than 2 μM). When results are compared to the surface lagoon–seawater mixing data, ammonium, phosphate, silicate, and barium in well samples of similar salinity show considerable enrichment, while a comparison of uranium and molybdenum data indicates significant depletion of these metals in most well samples.Based on these and other data, we deduce that the following processes are active: products of remineralization of organic detritus accumulated in lagoon sediments are advected through permeable sediments to the oceans; dissolution of biogenic solids and/or solid silicates mobilizes silicate; phosphate, uranium, and molybdenum are mobilized from phosphate-rich sediment layers; sulfate reducers remove uranium and perhaps molybdenum from solution throughout most of the well profile; barium is desorbed from solids in the subterranean mixing zone. These results demonstrate that freshwater discharged to the ocean through permeable sediments may have a significantly different composition than that discharged at the surface.  相似文献   

14.
A mass balance of the naturally occurring short-lived radium isotopes (223,224Ra) in the Venice Lagoon was conducted by an integrated approach combining the directly estimated individual Ra contributions and hydrodynamic model results. Hydrodynamic data allows for the calculation of the Ra mass balance in sub-sections of the Venice Lagoon (boxes), which are characterized by physically homogeneous properties, instead of investigating the entire lagoon. Utilizing this method, both the seasonal and the spatial variability of the submarine groundwater discharge in the Venice Lagoon have been estimated. Between 14–83 × 109 L d− 1 of water were calculated to flow across the sediment–sea interface, corresponding to 5–28 times the mean annual river input. The submarine groundwater discharge estimates were correlated with the residence time calculation to better understand spatial and seasonal variation.  相似文献   

15.
海底承压含水层排泄是海底地下水排泄的一种主要形式。由于这一过程发生在海水层下部,探测难度较大。为探讨海洋多电极电阻率法对该过程的探测能力,根据典型海底承压含水层地质模型构建不同排泄阶段地电模型,模拟海面和海床面两种探测情形分别进行多电极电阻率法理论探测结果计算和物理模拟,并对所得电阻率剖面进行对比分析。研究结果表明,水面多电极电阻率探测剖面能够清晰刻画出排泄入海的淡水体在海水中迁移、混合过程,但剖面异常特征和分辨率受探测装置形式、电极极距、海水深度影响;海床面探测则对沉积层中咸淡水交换过程反映能力更强,沉积层中的锲形海水侵入体可得到良好反映。  相似文献   

16.
山东半岛北部是中国海(咸)水入侵典型区域之一,沉积环境复杂,地下水质类型多样。该区域多条河流频繁摆动发育河流三角洲,同时受多次海侵海退事件影响,沉积海陆交互相地层,形成了复杂的地下水含水层系统。近几十年来,人类活动过量开采地下水,导致形成了淡水降落漏斗与卤水降落漏斗,改变了局部地下水的水动力条件,对地下水形成演化产生影响。根据研究区沉积背景与含水层分布特征,划分为3个流域、2层地下水。综合运用海洋地质学、环境同位素与水化学方法,分析结果表明,浅层地下水演化过程存在明显的地域差异性,弥河流域与白浪河流域主要接受大气降水补给,漏斗区以Cl-Ca型水为主,处于地下水咸化过程;潍河流域主要接受河水补给,漏斗区以HCO3·Cl-Na型水为主,处于地下水淡化过程。深层地下咸、卤水形成过程主要受混合作用控制,是一个淡水、海水、卤水三端元混合过程。  相似文献   

17.
The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources.The average 227Ac activities of nearshore marine end-members range from 0.4 dpm m− 3 at the Gulf of Mexico to 3.0 dpm m− 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm m−2 y− 1 from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 1015 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included.Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.  相似文献   

18.
陆源地下淡水排泄(SFGD)作为海底地下水排泄(SGD)中的重要组成部分,也是陆地向海洋输送化学物质重要且隐蔽的通道.将宾州州立集成水文模型PIHM应用到广东省东南部沿海地区,构建海岸地表水-地下水耦合模型,对SFGD速率进行时空变异分析,结果表明:(1)SFGD速率与相关影响因子的多元回归分析显示当地形坡度i≤2%时...  相似文献   

19.
Submarine groundwater discharge(SGD) has received increasing attention by studies on coastal areas; however,its effects on biogeochemical zonation have not been investigated to date. The Huanghe River Estuary(HRE) is a world class river estuary with high turbidity, and heavy human regulation. This study investigated how SGD is related to the benthic biogeochemistry of the HRE. Based on the distribution of several parameters(e.g., salinity,temperature, dissolved oxygen(DO) levels, p H, radium iso...  相似文献   

20.
In certain regions,submarine groundwater discharge(SGD) into the ocean plays a significant role in coastal material fluxes and their biogeochemical cycle;therefore,the impact of SGD on the ecosystem cannot be ignored.In this study,SGD was estimated using naturally occurring radium isotopes(~(223)Ra and ~(224)Ra) in a subtropical estuary along the Beibu Gulf,China.The results showed that the Ra activities of submarine groundwater were approximately 10 times higher than those of surface water.By assuming a steady state and using an Ra mass balance model,the SGD flux in May 2018 was estimated to be 5.98×10~6 m~3/d and 3.60×10~6 m~3/d based on ~(224)Ra and ~(223)Ra,respectively.At the same time,the activities of Ra isotopes fluctuated within a tidal cycle;that is,a lower activity was observed at high tide and a higher activity was seen at low tide.Based on these variations,the average tidal pumping fluxes of SGD were 1.15×10~6 m~3/d and 2.44×10~6 m~3/d with ~(224)Ra and ~(223)Ra,respectively.Tidaldriven SGD accounts for 24%-51% of the total SGD.Therefore,tidal pumping is an important driving force of the SGD in the Dafengjiang River(DFJR) Estuary.Furthermore,the SGD of the DFJR Estuary in the coastal zone contributes significantly to the seawater composition of the Beibu Gulf and the material exchange between land and sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号