首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses correlation and multiple regression techniques to document differences in annual and seasonal precipitation trends between the NCDC Climate Division database and the United States Historical Climate Network (USHCN) in the southeast United States. Findings indicate that the majority of climate divisions have different temporal patterns than those depicted by the USHCN. They did not, however, consistently possess statistically significant relationships between the ratio (CDD/USHCN) and changes in mean station location as noted in other studies. It appears that other influences cause the majority of the variance between the two datasets. The fact that the two datasets do not consistently agree, however, suggests that spuriously induced trends may be present in the NCDC Climate Division database.  相似文献   

2.
Three models, MM5, COAMPS, and WRF, have been applied for the warm season in 2003 and the cool season in 2003?C2004 to evaluate their performances. All models run over the same domain area covering the north Gulf Mexico and southeastern United States (US) region with the same spatial resolution of 27?km. It was found that the temporal variations of the mean error distribution and strength at 24 and 36?h were rather weak for surface temperature, sea level pressure, and surface wind speed for all models. A warm bias in surface temperature forecasts dominated over land during the warm season, whereas a cool bias existed during the cool season. The MM5 and WRF produced negative biases of sea level pressure during the warm season and positive biases during the cool season while the COAMPS yielded a similar distribution of sea level pressure biases during both seasons. During both seasons, similar surface wind speed biases produced by each model included a high wind speed forecast over most areas by MM5 while the COAMPS and WRF yielded weak surface winds over the western Plains and stronger surface winds over the eastern Plains. Root-mean-squared errors revealed that the forecast of surface temperature, sea level pressure, and surface wind speed were degraded with the increase of forecast time. For rainfall evaluation, it was found that the MM5 underpredicted seasonal precipitation while the COAMPS and WRF overpredicted. The bias scores revealed that the MM5 yielded an underprediction of the coverage of precipitation areas, especially for heavier rainfall events. The MM5 presented the lower threat score at lighter rainfall events compared to the COAMPS and WRF. For moderate and heavier thresholds, all models lacked forecast accuracy. The WRF accuracy in predicting precipitation was heavily dependent upon the performance of the selected cumulus parameterization scheme. Use of the Grell?CDevenyi and Bette?CMiller?CJanjic schemes helps suppress precipitation overprediction.  相似文献   

3.
4.
5.
One critical aspect of the Kyoto Protocol is its flexibility in compliance. Countries or groups of countries are free to choose their own implementation strategies. Should the United States ratify the Protocol, it will most likely use emissions trading in some form to implement this accord. Two variations on a US domestic carbon trading system are presented here. One is an auction system controlling carbon at the point of energy production and distribution. The second is a hybrid system allocating permits to large combustors and controlling smaller sources through standards. Within this paper we describe and compare the main attributes of each system. Separate sections also discuss various methods for allocating permits and incorporating standards.  相似文献   

6.
Increasing concentrations of CO2 and other greenhouse gases (GHG) in the Earth's atmosphere have the potential to enhance the natural greenhouse effect, which may result in climatic changes. The main anthropogenic contributors to this increase are fossil fuel combustion, land use conversion, and soil cultivation. It is clear that overcoming the challenge of global climate change will require a combination of approaches, including increased energy efficiency, energy conservation, alternative energy sources, and carbon (C) capture and sequestration. The United States Department of Energy (DOE) is sponsoring the development of new technologies that can provide energy and promote economic prosperity while reducing GHG emissions. One option that can contribute to achieving this goal is the capture and sequestration of CO2 in geologic formations. An alternative approach is C sequestration in terrestrial ecosystsems through natural processes. Enhancing such natural pools (known as natural sequestration) can make a significant contribution to CO2 management strategies with the potential to sequester about 290 Tg C/y in U.S. soils. In addition to soils, there is also a large potential for C sequestration in above and belowground biomass in forest ecosystems.A major area of interest to DOE's fossil energy program is reclaimed mined lands, of which there may be 0.63 ×106 ha in the U.S. These areas are essentially devoid of soil C; therefore, they provide an excellent opportunity to sequester C in both soils and vegetation. Measurement of C in these ecosystems requires the development of new technology and protocols that are accurate and economically viable. Field demonstrations are needed to accurately determine C sequestration potential and to demonstrate the ecological and aesthetic benefits in improved soil and water quality, increased biodiversity, and restored ecosystems.The DOE's research program in natural sequestration highlights fundamental and applied studies, such as the development of measurement, monitoring, and verification technologies and protocols and field tests aimed at developing techniques for maximizing the productivity of hitherto infertile soils and degraded ecosystems.  相似文献   

7.
Afforestation of marginal agricultural lands represents a promising option for carbon sequestration in terrestrial ecosystems. An ecosystem carbon model was used to generate new national maps of annual net primary production (NPP), one each for continuous land covers of ‘forest’, ‘crop’, and ‘rangeland’ over the entire U. S. continental area. Direct inputs of satellite “greenness” data from the Advanced Very High Resolution Radiometer (AVHRR) sensor into the NASA-CASA carbon model at 8-km spatial resolution were used to estimate spatial variability in monthly NPP and potential biomass accumulation rates in a uniquely detailed manner. The model predictions of regrowth forest production lead to a conservative national projection of 0.3 Pg C as potential carbon stored each year on relatively low-production crop or rangeland areas. On a regional level, the top five states for total crop afforestation potential were: Texas, Minnesota, Iowa, Illinois, and Missouri, whereas the top five states for total rangeland afforestation potential are: Texas, California, Montana, New Mexico, and Colorado. Afforestation at this level of intensity has the capacity to offset at least one-fifth of annual fossil fuel emission of carbon in the United States. These projected afforestation carbon gains also match or exceed recent estimates of the annual sink for atmospheric CO2 in currently forested area of the country.  相似文献   

8.
Terrestrial biosphere carbon storage under alternative climate projections   总被引:2,自引:1,他引:2  
This study investigates commonalities and differences in projected land biosphere carbon storage among climate change projections derived from one emission scenario by five different general circulation models (GCMs). Carbon storage is studied using a global biogeochemical process model of vegetation and soil that includes dynamic treatment of changes in vegetation composition, a recently enhanced version of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). Uncertainty in future terrestrial carbon storage due to differences in the climate projections is large. Changes by the end of the century range from −106 to +201 PgC, thus, even the sign of the response whether source or sink, is uncertain. Three out of five climate projections produce a land carbon source by the year 2100, one is approximately neutral and one a sink. A regional breakdown shows some robust qualitative features. Large areas of the boreal forest are shown as a future CO2 source, while a sink appears in the arctic. The sign of the response in tropical and sub-tropical ecosystems differs among models, due to the large variations in simulated precipitation patterns. The largest uncertainty is in the response of tropical rainforests of South America and Central Africa.  相似文献   

9.
10.
This investigation is an extension of earlier work on rainfall patterns in the western United States. In the present study, rainfall figures from World Weather Records for cities east of the Mississippi have been subjected to filter analysis using the four filters described in the earlier investigation.The results suggest substantial coherence of rainfall data in a broad central area of North America, from the Great Lakes to the Rockies and into southern parts of the Canadian Prairies and Ontario. In this entire region there appears to be a pronounced rainfall cycle, of about 22 yr, which exhibits a possible relationship with the double sunspot cycle. However, inland from the U.S. north-east coast and including southern Quebec and the Canadian maritime Provinces, the cycle is different and is closer to 16 yr.Although the earlier investigation pointed to a connection between the lunar cycle of 18.6 yr and rainfall behaviour in the far west of the United States, there is little evidence of a similar connection in the east.  相似文献   

11.
In June 2017, the Trump administration decided to withdraw the US from the Paris Agreement, a landmark climate agreement adopted in 2015 by 195 nations. The exit of the US has not just raised concern that the US will miss its domestic emission reduction targets, but also that other parties to the Paris Agreement might backtrack on their initial pledges regarding emission reductions or financial contributions. Here we assess the magnitude of the threat that US non-cooperation poses to the Paris Agreement from an international relations perspective. We argue that US non-cooperation does not fundamentally alter US emissions, which are unlikely to rise even in the absence of new federal climate policies. Nor does it undermine nationally determined contributions under pledge and review, as the Paris Agreement has introduced a new logic of domestically driven climate policies and the cost of low-carbon technologies keeps falling. However, US non-participation in raising climate finance could raise high barriers to global climate cooperation in the future. Political strategies to mitigate these threats include direct engagement by climate leaders such as the European Union with key emerging economies, notably China and India, and domestic climate policies that furnish benefits to traditional opponents of ambitious climate policy.

Key policy insights

  • US non-cooperation need not be a major threat to pledge and review under the Paris Agreement.

  • US non-cooperation is a serious threat to climate finance.

  • Deeper engagement with emerging economies offers new opportunities for global climate policy.

  相似文献   

12.
13.
J. Rolf Olsen 《Climatic change》2006,76(3-4):407-426
Federal agencies use flood frequency estimates to delineate flood risk, manage the National Flood Insurance Program, and ensure that Federal programs are economically efficient. The assumption behind traditional flood risk analysis is that climate is stationary, but anthropogenic climate change and better knowledge of interdecadal climate variability challenge the validity of the assumption. This paper reviews several alternative statistical models for flood risk estimation that do not assume climate stationarity. Some models require subjective judgement or presuppose an understanding of the causes of the underlying non-stationarity, which is problematic given our current knowledge of the interaction of climate and floods. Although currently out of favor, hydrometeorological models have been used for engineering design as alternatives to statistical models and could be adapted to different climate conditions. Floodplain managers should recognize the potentially greater uncertainty in flood risk estimation due to climate change and variability and try to incorporate the uncertainties into floodplain management decision-making and regulation.  相似文献   

14.
15.
一些水文气候资料分析表明,美国西部正在经历着多年的严重干旱。然而,利用重建的覆盖美国西部大部分地区的过去1200年的网格化干旱资料进行分析,看出与更早时期出现的极端干旱和发生在公元800~1300年间(中世纪暖期(MWP))的大范围严重干旱相比,现在正经历的干旱还不算很严重。如果美国西部干旱程度的加强是一种对气候变暖的自然响应,那么任何将来温度增暖的趋势都将会加剧美国西部地区的长期干旱。  相似文献   

16.
1901–80 data for the contiguous U.S. show that secular variability of thunder days was very much less than that of precipitation or of frequency of extra tropical cyclones. Overall, there may have been a slight decline, but more evident was an increase to the thirties followed by a falling off, broken only by a peak in the seventies. These up-and-down movements were evident in most months of the year and regions of the U.S. The general decrease, however, was clear only in the South East and replaced by an increase in the Upper Great Lakes region. Secular variation in thunder day frequency was slightly correlated positively with that of extra tropical cyclone frequency and negatively with sea level pressure. The analysis also confirmed well known seasonal and regional patterns of thunder activity.  相似文献   

17.
Thunder-day occurrences during a 100-year period based on data from carefully screened records of 86 first-order stations distributed across the United States were assessed for temporal fluctuations and trends during 1896–1995. Short-term (<10-year) fluctuations of adjacentstations were often dissimilar reflecting localized differences in storm activity in a few years, making spatial interpretations difficult. But, temporal fluctuations based on 20-year and longer periods exhibited regional coherence reflecting the control of large, synoptic-scale weather systems on the distribution of thunderstorms over broad areas. Classification of station fluctuations based on 20-year periods revealed six types of distributions existed and they formed 12 discrete areas across the nation. One type present in the lower Midwest and the South had a peak in storm activity in 1916–1935 followed by a general decline to 1976–1995.A second type maximizing at the same time had its minimum earlier, in 1956–1975. Another distribution found at stations in the upper Midwest and Northeast had a mid-century peak (1936–1955) with a recent minimum in1976–1995. A fourth distribution also peaked in 1936–1955 but had an early minimumin 1896–1915, and it mainly occurred in the northern plains and Rocky Mountains. A fifth distribution peaked during 1956–1975 and was foundat stations in four areas including the central High Plains, Southwest, northern Great Lakes, and Southeast. The sixth temporal distribution showed a steady increase in storm activity during the 100-year period, peaking in 1976–1995, and covered a large area extending from the Pacific Northwestacross the central Rockies and into the southern High Plains. The national average distribution based on all station values peaked in mid century. The national distribution differs markedly from several regional distributions illustrating the importance of using regional analysis to assess temporal fluctuations in severe weather conditions in the nation. The 100-year linear trends of the 86 stations defined six regions across the U.S. Significant upward trends existed over most of the western two-thirds of the nation, unchanging trends existed in the northern plains and Midwest, and downward trends were found in most of the nation's east. The up trends in storm-day frequencies in the southern plains occurred where storm damage is greatest and where demographic changes have added to storm losses over time. The national patterns of trends and storm distributions were similar to those found for hail. The temporal distributions of storm activity helped explain recent increases in major storms and their losses, conditions which have increased in the west and south.  相似文献   

18.
19.
Projections of runoff from global multi-model ensembles provide a valuable basis for the estimation of future hydrological extremes. However, projections suffer from uncertainty that originates from different error sources along the modeling chain. Hydrological impact studies have generally partitioned these error sources into global impact and global climate model (GIM and GCM, respectively) uncertainties, neglecting other sources, including scenarios and internal variability. Using a set of GIMs driven by GCMs under different representative concentration pathways (RCPs), this study aims to partition the uncertainty of future flows coming from GIMs, GCMs, RCPs, and internal variability over the CONterminous United States (CONUS). We focus on annual maximum, median, and minimum runoff, analyzed decadally over the twenty-first century. Results indicate that GCMs and GIMs are responsible for the largest fraction of uncertainty over most of the study area, followed by internal variability and to a smaller extent RCPs. To investigate the influence of the ensemble setup on uncertainty, in addition to the full ensemble, three ensemble configurations are studied using fewer GIMs (excluding least credible GIMs in runoff representation and GIMs accounting for vegetation and CO2 dynamics), and excluding intermediate RCPs. Overall, the use of fewer GIMs has a minor impact on uncertainty for low and medium flows, but a substantial impact for high flows. Regardless of the number of pathways considered, RCPs always play a very small role, suggesting that improvement of GCMs and GIMs and more informed ensemble selections can yield a reduction of projected uncertainties.  相似文献   

20.
Summary This study uses correlation and multiple regression techniques to document differences in annual temperature trends between the National Climatic Data Center (NCDC) Climate Division Database (CDD) and the United States Historical Climate Network (USHCN) for the Southeast United States. Results indicate that an increase (decrease) in elevation and a northward (southward) shift in mean station location in the CDD correspond with decreases (increases) in temperature. Although the movement of station locations in the CDD showed only modest impacts on trends, the effects of the movements are statistically significant, and explain some of the variances in the temperature trends. Results therefore suggest that climate divisions with more rugged terrain and greater shifts in elevation are more susceptible to spuriously generated trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号