首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article addresses the interesting and important problem of large-scale magnetic field generation in turbulent flows, using a self-consistent dynamo model recently developed. The main idea of this model is to consider the induction equation for the large-scale magnetic field, integrated consistently with the turbulent dynamics at smaller scales described by a magnetohydrodynamic shell model. The questions of dynamo action threshold, magnetic field saturation, magnetic field reversals, nature of the dynamo transition and the changes of small-scale turbulence as a consequence of the dynamo onset are discussed. In particular, the stability curve obtained by the model integration is shown in a very wide range of values of the magnetic Prandtl number not yet accessible by direct numerical simulation but more realistic for natural dynamos. Moreover, from our analysis it is shown that the large-scale dynamo transition displays a hysteretic behaviour and therefore a subcritical nature. The model successfully reproduces magnetic polarity reversals, showing the capability to generate persistence times which are increasing for decreasing magnetic diffusivity. Moreover, when the system reaches a statistically stationary dynamo state, where the large-scale magnetic field can abruptly reverse its polarity (magnetic reversal state) or not, keeping the same polarity (steady state), it shows an unmistakable tendency towards the energy equipartition for the turbulence at small scale.  相似文献   

2.
Abstract

Dynamic interaction between magnetic field and fluid motion is studied through a numerical experiment of nonlinear three-dimensional magnetoconvection in a rapidly rotating spherical fluid shell to which a uniform magnetic field parallel to its spin axis is applied. The fluid shell is heated by internal heat sources to maintain thermal convection. The mean value of the magnetic Reynolds number in the fluid shell is 22.4 and 10 pairs of axially aligned vortex rolls are stably developed. We found that confinement of magnetic flux into anti-cyclonic vortex rolls was crucial on an abrupt change of the mode of magnetoconvection which occurred at Δ = 1 ~ 2, where A is the Elsasser number. After the mode change, the fluid shell can store a large amount of magnetic flux in itself by changing its convection style, and the magnetostrophic balance among the Coriolis, Lorentz and pressure forces is established. Furthermore, the toroidal/poloidal ratio of the induced magnetic energy becomes less than unity, and the magnetized anti-cyclones are enlarged due to the effect of the magnetic force. Using these key ideas, we investigated the causes of the mode change of magnetoconvection. Considering relatively large magnetic Reynolds number and a rapid rotation rate of this model, we believe that these basic ideas used to interpret the present numerical experiment can be applied to the dynamics in the Earth's and other planetary cores.  相似文献   

3.
Geomagnetism and Aeronomy - In this paper, for a number of significantly different parameters of a localized plane layer of collisionless electron–proton plasma and an external magnetic field...  相似文献   

4.

We are investigating numerically the nonlinear behaviour of a space-periodic MHD system with ABC forcing. Most computations are performed for magnetic Reynolds numbers increasing from 0 to 60 and a fixed kinematic Reynolds number, small enough for the trivial solution with a zero magnetic field to be stable to velocity perturbations. At the critical magnetic Reynolds number for the onset of instability of the trivial solution the dominant eigenvalue of the kinematic dynamo problem is real. In agreement with the bifurcation theory new steady states with non-vanishing magnetic field appear in this bifurcation. Subsequent bifurcations are investigated. A regime is detected, where chaotic variations of the magnetic field orientation (analogous to magnetic field reversals) are observed in the temporal evolution of the system.  相似文献   

5.
Abstract

The effect of an axial magnetic field on the linear stability of shear flows in rotating systems is examined by extending Busse's analysis of the nonmagnetic case to fluids of high magnetic diffusivity in the presence of a magnetic field. The shear is caused by differential rotation which creates slight deviations from a state of rigid rotation, corresponding to a small Rossby number. It is found that the Rossby number for the onset of instability is larger when a magnetic field is present than when it is absent.  相似文献   

6.
Investigation of magnetic field generation by convective flows is carried out for three values of kinematic Prandtl number: P = 0.3, 1 and 6.8. We consider Rayleigh–Bénard convection in Boussinesq approximation assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period in the x and y directions. Convective attractors are modelled for increasing Rayleigh numbers for each value of the kinematic Prandtl number. Linear and non-linear dynamo action of these attractors is studied for magnetic Prandtl numbers P m ≤ 100. Flows, which can act as magnetic dynamos, have been found for all the three considered values of P, if the Rayleigh number R is large enough. The minimal R, for which of magnetic field generation occurs, increases with P. The minimum (over R) of critical Pm for magnetic field generation in the kinematic regime is admitted for P = 0.3. Thus, our study indicates that smaller values of P are beneficial for magnetic field generation.  相似文献   

7.

长周期大地电磁测量要求三轴磁通门传感器具有低的噪声水平及高稳定性,根据实际需求设计一个尺寸合适的球型反馈线圈可以有效提高反馈磁场的均匀性,进而降低磁通门传感器的噪声水平.本文首先分析了非均匀反馈磁场引入磁通门噪声的机理,然后根据毕奥-萨伐尔定律和矢量叠加原理,以等间距多个单匝线圈构成单轴绕组的形式,建立了球型反馈线圈轴线上的轴向磁场分布及磁场均匀度数学模型,在给定磁场均匀度和球型反馈线圈直径的条件下,运用控制变量法确定了球型反馈线圈的单匝线圈数量和间距等关键结构参数.我们把设计的结构参数代入球型空间磁场分布数学模型,验证了本设计方法的正确性.最后,按照设计的结构参数制作了基于球型反馈线圈磁通门探头的三轴磁通门传感器,通过与体积相近的基于亥姆霍兹型反馈线圈磁通门探头的三轴磁通门传感器对比测试噪声水平,结果表明球型反馈线圈磁通门探头能够使得三轴磁通门传感器具有更稳定和较低的噪声水平.

  相似文献   

8.
Thermally acquired remanent magnetization is important for the estimation of the past magnetic field present at the time of cooling. Rocks that cool slowly commonly contain magnetic grains of millimeter scale. This study investigated 1-mm-sized magnetic minerals of iron, iron–nickel, magnetite, and hematite and concluded that the thermoremanent magnetization (TRM) acquired by these grains did not accurately record the ambient magnetic fields less than 1 μT. Instead, the TRM of these grains fluctuated around a constant value. Consequently, the magnetic grain ability to record the ambient field accurately is reduced. Above the critical field, TRM acquisition is governed by an empirical law and is proportional to saturation magnetization (Ms). The efficiency of TRM is inversely proportional to the mineral's saturation magnetization Ms and is related to the number of domains in the magnetic grains. The absolute field for which we have an onset of TRM sensitivity is inversely proportional to the size of the magnetic grain. These results have implications for previous reports of random directions in meteorites during alternating field demagnetization, or thermal demagnetization of TRM. Extraterrestrial magnetic fields in our solar system are weaker than the geomagnetic field by several orders of magnitude. Extraterrestrial rocks commonly contain large iron-based magnetic minerals as a common part of their composition, and therefore ignoring this behavior of multidomain grains can result in erroneous paleofield estimates.  相似文献   

9.
Abstract

A magnetic field line topology with nulls, generated by superimposing a uniform magnetic field onto the field from a distributed ring current, is analyzed. This simple model, which is reminiscent of the structures found in laboratory field reversed configurations and detached plasmoids, is amenable to substantial analytical progress and also facilitates the visualization of the three dimensional field geometry. Four nulls are seen to exist and representative field lines and tubes of flux found by numerical integration are presented. An infinite number of topologically distinct flux bundles is found. These are distinguished by the number of times they encircle a circular magnetic field line. A convenient mapping is described which proves very useful in distinguishing between and following the paths of the different tubes of flux as they traverse through the null system. The separatrices that divide these flux bundles are described. The complexities already present in this simple but nontrivial configuration serve to emphasize the difficulties in analyzing more complicated geometries, but the intuition gained from this study proves beneficial in those cases. One such example is the comparison of the generic features of our model with those found in a topologically different model of plasmoid formations in the earth's magnetotail.  相似文献   

10.
11.
Over the past 10 years, geodynamo simulations have grown rapidly in sophistication. However, it is still necessary to make certain approximations in order to maintain numerical stability. In addition, models are forced to make assumptions about poorly known parameters for the Earth's core. Different magnetic Prandtl numbers have been used and different assumptions about the presence of radiogenic heating have been made. This study examines some of the consequences of different approximations and assumptions using the Glatzmaier–Roberts geodynamo model. Here, we show that the choice of magnetic Prandtl number has a greater influence on the character of the magnetic field produced than the addition of a plausible amount of radiogenic heating. In particular, we find that prescribing a magnetic Prandtl number of unity with Ekman number limited by current computing resources, results in magnetic fields with significantly smaller intensities and variabilities compared with the much more Earth-like results obtained from simulations with large magnetic Prandtl numbers. A magnetic Prandtl number of unity, with both the viscous and magnetic diffusivities set to the Earth's magnetic diffusivity, requires a rotation rate much smaller than that of the Earth for currently reachable Ekman numbers. This results in a reduced dominance of the Coriolis forces relative to the buoyancy forces, and therefore, a reduction in the magnetic field intensity and the variability compared to the large Prandtl number cases.  相似文献   

12.
Abstract

If a conducting fluid shell is undergoing spin-axisymmetric differential rotation and overlies the dynamo generating region of a planet then it is capable of greatly reducing the non-spin-axisymmetric components of the generated field, provided the appropriate magnetic Reynolds number is large. The model, closely related to the electromagnetic skin effect, is quantified and applied to Saturn. The observed small dipole tilt (~ 1°) of Saturn's magnetic field can be explained because of the presence of a stably stratified conducting layer overlying the dynamo region. This layer is a predicted consequence of the thermal evolution, arises because of the limited solubility of helium in metallic hydrogen (Stevenson, 1980), and appears to be required by the Voyager infrared observations indicating depletion of helium from Saturn's atmosphere. The much larger dipole tilt angles of Jupiter and the Earth indicate the absence of any such stable, differentially rotating layer with a large magnetic Reynolds number.  相似文献   

13.
位场曲化平积分方程的迭代解   总被引:3,自引:2,他引:1       下载免费PDF全文
提出了位场曲化平的新方法. 给定观测曲面S上的位场、S对下方水平面P的相对高程,确定P上的位场. 利用由P向上延拓到S的积分式,建立这两个面上位场及相对高程三者所满足的方程,它是第一类Fredholm积分方程. 用Fourier逆变换式把这一空间域积分式化为波数域积分式,再由指数函数的Taylor展开进一步化为级数式. 积分方程的解采用逐次逼近法迭代计算,即用S上的位场观测值作为P上位场的初始迭代值,用导出的级数式求得S上的位场计算值、由S上的位场观测值与计算值之差校正P上的位场,多次迭代,直到满足迭代终止准则. 我们还给出该积分方程的波数域迭代计算方法. 模型算例表明,重力异常曲化平的均方差和磁异常曲化平的均方差分别为0.0008 mGal和0.0019 nT,在主频为2.26 GHz的笔记本电脑运行,2048×2048数据量,计算时间是975 s. 野外磁场实际资料处理也证实这种方法的有效性.  相似文献   

14.
The onset of Boussinesq convection in a horizontal layer of an electrically conducting incompressible fluid is considered. The layer rotating about a vertical axis is heated from below; a vertical magnetic field is imposed. Rigid electrically insulating boundaries are assumed. The loss of stability of the trivial steady state, which occurs as the Rayleigh numbers increase, can be accompanied by the development of a monotonic or an oscillatory instability, depending on the parameter values of the problem at hand (the Taylor number, the Chandrasekhar number, the kinematic and the magnetic Prandtl numbers). When the instability is monotonic, the emerging convective rolls themselves are also unstable if the Taylor number is sufficiently large (the so-called Küppers-Lortz instability takes place). In the present work it is studied how the critical value of the Rayleigh number, the type of the trivial steady state instability, and the critical value of the Taylor number for the Küppers-Lortz instability depend on the kinematic and the magnetic Prandtl numbers. We consider the values of the Prandtl number not exceeding 1, which is typical for the outer core of the Earth.  相似文献   

15.
Abstract

A meridional circulation of sunspots has been measured through the digital analysis of the Meudon spectroheliograms from 1978 to 1983. Old and young sunspots follow a zonal meridional circulation, in several bands of latitude, in which two adjacent bands have opposite motions. This meridional circulation pattern is time-dependent. Using the H α filaments as magnetic field tracers, a large-scale magnetic pattern has been found that was also obtained independently by direct measurement of the magnetic field (Hoeksema, 1988).

The coincidence of a large-scale magnetic pattern with a zonal meridional circulation suggests the existence of azimuthal rolls below the surface, and these azimuthal rolls can explain a number of properties of the solar cycle. New rolls occur with increasing proximity to the Equator, thereby indicating the direction of propagation of the dynamo wave. The occurrence of rolls is very favorable to the emergence of the magnetic regions. The rolls also influence the magnetic complexity of the active regions. They modulate the surface rotation through the Coriolis force, which accelerates or decelerates the fluid particles. They therefore offer a plausible explanation of the torsional oscillation pattern.

There are a number of problems raised by such an unexpected circulation pattern: for example, the coexistence of axisymmeric rolls with hypothetical giant cells, the location of the dynamo source below or within the convective zone, and the coupling of the radiative interior and the convective layers. To resolve these important issues, continuous observational studies are needed of the manifestation of solar activity, as well as of radius and luminosity variations. So, we have aimed our paper at an audience of theoreticians in the hope that they take up the challenges we describe.  相似文献   

16.
We argue that global magnetic field reversals similar to those observed in the Milky Way occur quite frequently in mean-field galactic dynamo models that have relatively strong, random, seed magnetic fields that are localized in discrete regions. The number of reversals decreases to zero with reduction of the seed strength, efficiency of the galactic dynamo and size of the spots of the seed field. A systematic observational search for magnetic field reversals in a representative sample of spiral galaxies promises to give valuable information concerning seed magnetic fields and, in this way, to clarify the initial stages of galactic magnetic field evolution.  相似文献   

17.
CSAMT单分量数据解释方法   总被引:3,自引:1,他引:2       下载免费PDF全文

可控源音频大地电磁法(CSAMT)一直沿用大地电磁法(MT)的办法,通过计算电场分量与磁场分量的比值,求取卡尼亚视电阻率.而CSAMT场源已知,电场分量和磁场分量都与地下电阻率存在一定的关系,可以单独采用CSAMT电场分量或者磁场分量提取地下介质的视电阻率.本文通过分析电场分量与磁场分量的数据特性,提出利用CSAMT电场单分量数据进行视电阻率的计算,用改进的广义逆矩阵反演方法,使初始模型中的地电层数等于频道个数,克服了以往反演计算中层数较少的问题;实现全场区电场分量视电阻率曲线的拟合反演.同时对单分量视相位计算方法进行分析,结合山西大同地区积水采空区探测及数据解释结果,论证本文提出的单分量解释方法的有效性.

  相似文献   

18.
The problem of a smooth field configuration, which should be an initial configuration in modeling (using the method of coarse particles) the problem of a stationary solar wind flow around a magnetic cloud in the case of a spatially two-dimensional statement (when a magnetic cloud is considered as a force-free magnetic cylinder with a finite radius) is considered. It has been indicated that such a statement is possible only when the magnetic field in the solar wind is parallel to the cylinder axis. The method for finding the magnetic field of a force-free cylinder with a finite radius, when some field component is specified and another component is determined based on this one (which makes it possible to construct fields with preassigned properties), has been proposed. The variant for constructing the initial field configuration in the transition region around a cylinder has been proposed. This variant makes it possible to gradually pass from homogeneous crossed fields in the solar wind to a force-free magnetic and zero electric fields within a cylinder, an electric field being potential and orthogonal to a magnetic field (in the reference system related to a magnetic cloud).  相似文献   

19.
Abstract

We consider the turbulent dynamo action in a differentially rotating flow by making use of a kinematic approach when the effect of a generated magnetic field on turbulent motions is neglected. The mean electromotive force is calculated in a quasilinear approximation. Differential rotation can stretch turbulent magnetic field lines and break the symmetry of turbulence in such a way that turbulent motions become suitable for the generation of a large scale magnetic field. The presence of shear changes the type of an equation governing the mean magnetic field. Due to shear stresses the mean magnetic field can be generated by a turbulent dynamo action even in a uniform turbulence. The growth rate depends on the length scale of the mean field being faster for the field with a smaller length scale.  相似文献   

20.
Summary Problem of unsteady motion of a conducting viscous incompressible fluid through an annulus with porous walls under an external radial magnetic field has been discussed. Taking the Reynolds number and the magnetic Reynolds number to be equal, exact solution of the problem is obtained in terms of Bessel functions when the motion is due to the time-dependent pressure gradient or the time-dependent velocity of either of the boundaries. Two types of dependence on time are considered; one, exponentially increasing, and the other, exponentially decreasing. Solutions in certain extreme cases are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号