首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究成都地区城市化对当地气候的影响,利用不同时期的下垫面土地利用类型数据和耦合单层城市冠层模型(UCM)的WRF(Weather Research and Forecasting)模式对成都夏季和冬季城市化效应进行了模拟研究,得到以下主要结论:1)成都地区城市化使夏季城区上空出现增温区域。城区地表气温升高约2.8°C,边界层高度升高约150 m,冬季地表气温平均升高约0.6°C,边界层高度升高约25 m。夏冬两季气温日较差均减小。2)受城市化影响,成都地区夏季和冬季2 m相对湿度减小,感热通量增加,潜热通量减小,且夏季变化程度强于冬季。3)城市化使地表的粗糙度增加,进而使夏季和冬季风速在城区减小,减小约0.1~0.6 m s?1,但夏季风速减小区域较冬季更大。城市化还使城市上空低层散度减小,辐合作用增强,垂直速度增大,夏季水汽往高层输送明显。4)夏季,城市化作用使日平均和白天时段降水量在城区的迎风区和下风区均增加,夜间降水量在下风区域增加,对迎风区域影响不明显。  相似文献   

2.
冬季城市边界层风场和温度场结构分析   总被引:15,自引:1,他引:15  
桑建国  刘万军 《气象学报》1990,48(4):459-468
本文根据沈阳地区大气环境容量研究中1984年12月所进行的观测,对沈阳城市边界层的流场和温度场结构做了分析。得出了冬季城市边界层的一些特征。当地面风速微弱时,热岛效应显著。边界层低层辐合抬升,在城市下风边缘可能出现反向气流。当风速较强时,城市的摩擦效应占优势,城市上风部分辐合抬升,下风部分辐散下沉。观测分析还表明,城市建筑对气流的阻滞作用可伸展到几百米的高度。夜间微风时,接地逆温层厚度可达200m,城市内边界层从上风边缘起开始发展,厚度可达100m。白天风力微弱时,重烟尘污染可导致城市冷岛,并推迟对流边界层的发展。  相似文献   

3.
The spatial variation of the nocturnal urban boundary-layer structure is described and the time variation of the mixing height, and the nocturnal inversion top and strength after sunrise is presented for urban sites located upwind, downwind, and near the center of the heat island, and at an upwind rural site. Observations were derived from high resolution temperature profiles obtained by a helicopter during 35 intensive morning experiments in St. Louis, Missouri.The nocturnal urban boundary layer increased in depth from the upwind edge of the urban area. Far downwind, in suburban and rural areas, a remnant of the urban boundary layer existed between a stable surface-based layer and an upper inversion that resembled the upwind rural inversion.The mixing height (base of the inversion) evolved in a parabolic manner after sunrise at the urban locations. A rise in the inversion top after sunrise at the urban locations is believed to be due to low-level convergence which caused the entire inversion layer to be lifted. Due to large horizontal temperature gradients associated with the urban heat island, cold air advection tended to counteract the urban-induced lifting effect by inhibiting mixing-height growth at urban locations upwind of the heat-island center. Advection also caused the maximum height and fastest growth rate of the urban mixed layer to be shifted downwind of the urban area with time. However, mean mixing-height growth rates at various urban locations did not differ significantly. The rural mixing-height growth rate was about twice as large as urban values for up to 3 hr after sunrise. Spatial differences in the mixing height became small near the time of inversion dissipation, which appeared to occur at about the same time at all locations.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

4.
AnAnalyticalStudyontheUrbanBoundaryLayer①①ThisprojectwassupportedbyLASG,ChineseAcademyofSciences.LinNaishi(林乃实),ZhouZugang(周祖...  相似文献   

5.
A two-dimensional time-dependent Earth-atmosphere model is developed which can be applied to the study of a class of atmospheric boundary-layer flows which owe their origin to horizontal inhomogeneities with respect to surface roughness and temperature. Our main application of the model is to explore the governing physical mechanisms of nocturnal urban atmospheric boundarylayer flow.A case study is presented in which a stable temperature stratification is assumed to exist in the rural upwind area. It is shown through integration of the numerical model that as this air passes over a city, the heat is redistributed due to increased surface friction (and hence increased turbulent mixing). This redistribution of heat results in the formation of an urban heat island.Additional numerical integrations of the model are conducted to examine the dependence of induced perturbations on: (1) the upwind temperature inversion; (2) the geostrophic wind speed; and (3) urbanization. The results show a linear relationship between heat-island intensity and the rural temperature inversion with the heat island increasing in intensity as the upwind inversion becomes stronger; that the heat-island intensity close to the surface is inversely proportional to the geostrophic wind; and that the effects of anthropogenic heat cause an increase in the perturbation temperature with the perturbation extending to higher altitudes. From this study, we conclude that with an upwind temperature inversion, a city of any size should generate a heat island as a result of increased surface roughness. The heat-island intensity should increase with city size because of two factors: larger cities are usually aerodynamically rougher; and larger cities have a larger anthropogenic heat output.Research supported in part by NSF Grant GA-16822.  相似文献   

6.
Early studies of mountain waves reported various results that have rarely been investigated since. These include: large-amplitude mountain waves above an unstable boundary layer much higher than the mountains; a repeated downwind drift and upwind jump of mountain waves; and larger vertical wind magnitude near sunrise and/or sunset. These are investigated using over 3,000 radiosondes and meso-strato-troposphere (MST) radar. Superadiabatic temperature gradients are found beneath mountain waves, explainable by convection which appears to raise the mountain-wave launching height. Movement of mountain-wave patterns is studied by a new method using height–time vertical wind data. A swaying motion of mountain waves, with period of a few minutes, appears to be equally upwind and downwind, rather than asymmetric at the heights measurable. Also, vertical wind shows no change in mean, variance or extreme values near sunrise and sunset, despite the expected diurnal changes of boundary-layer structure. An explanation for differences between MST radar and other measurements and models of mountain waves is suggested in terms of more than one variety of mountain wave. Type 1 has stable air near the ground; type 2 is above a convective/turbulent boundary layer of significant height as compared to the mountains.  相似文献   

7.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

8.
Increased heat fluxes near a forest edge   总被引:1,自引:0,他引:1  
Summary ?Observations of sensible and latent heat flux above forest downwind of a forest edge show these fluxes to be larger than the available energy over the forest. The enhancement averages to 56 W m−2, or 16% of the net radiation, at fetches less than 400 m, equivalent to fetch to height ratios less than 15. The enhancement of turbulent energy fluxes is explained by advection and increases with the difference in temperature and humidity of the air over the upwind area as compared to the forest. The relatively high temperature and humidity of the upwind air are not caused by high surface heat fluxes, but are explained by the relatively low aerodynamic roughness of the upwind surface. Although the heat fluxes over forest are enhanced, the momentum fluxes are almost adjusted to the underlying forest. The different behaviour of heat and momentum fluxes is explained by absorption of momentum by pressure gradients near the forest edge. It is concluded that fetch requirements to obtain accurate surface fluxes from atmospheric observations need to be more stringent for scalar fluxes as compared to momentum fluxes. Received November 23, 2001; accepted May 13, 2002  相似文献   

9.
不稳定层结下的热岛环流   总被引:1,自引:0,他引:1       下载免费PDF全文
采用对数压力坐标系的大气热力、动力方程组,分析了由于城市的加热和摩擦作用,在大气层结不稳定情况下的热岛环流,给出了表征热岛基本特征的垂直运动,水平运动和温度场的空间结构,从理论上证实了热岛环流在不稳定城市边界层中存在的可能性,并得出了如下主要结论:(1) 垂直运动在市区是上升运动,在郊区是下沉运动,在低层z=150m处有一闭合中心;(2) 流场在市区上空呈一层波动,波谷在上风区,波峰在下风区,波长为城市半宽的4倍;(3) 地面的高温区出现在城市的下风区,且无逆温层出现。  相似文献   

10.
缪群 《大气科学进展》2013,30(4):1025-1038
Data from in situ probes and a vertically-pointing mm-wave Doppler radar aboard a research aircraft are used to study the cloud microphysical effect of glaciogenic seeding of cold-season orographic clouds. A previous study (Geerts et al., 2010) has shown that radar reflectivity tends to be higher during seeding periods in a shallow layer above the ground downwind of ground-based silver iodide (AgI) nuclei generators. This finding is based on seven flights, conducted over a mountain in Wyoming (the Unites States), each with a no-seeding period followed by a seeding period. In order to assess this impact, geographically fixed flight tracks were flown over a target mountain, both upwind and downwind of the AgI generators. This paper examines data from the same flights for further evidence of the cloud seeding impact. Composite radar data show that the low-level reflectivity increase is best defined upwind of the mountain crest and downwind of the point where the cloud base intersects the terrain. The main argument that this increase can be attributed to AgI seeding is that it is confined to a shallow layer near the ground where the flow is turbulent. Yet during two flights when clouds were cumuliform and coherent updrafts to flight level were recorded by the radar, the seeding impact was evident in the flight-level updrafts (about 610 m above the mountain peak) as a significant increase in the ice crystal concentration in all size bins. The seeding effect appears short-lived as it is not apparent just downwind of the crest.  相似文献   

11.
Surface fluxes, originating from forest patches, are commonly calculated from atmospheric flux measurements at some height above that patch using a correction for flux arising from upwind surfaces. Footprint models have been developed to calculate such a correction. These models commonly assume homogeneous turbulence, resulting in a simulated atmospheric flux equal to the average surface flux in the footprint area. However, atmospheric scalar fluxes downwind of a forest edge have been observed to exceed surface fluxes in the footprint area. Variations in atmospheric turbulence downwind of the forest edge, as simulated with an E – model, can explain enhanced atmospheric scalar fluxes. This E – model is used to calculate the footprint of atmospheric measurements downwind of a forest edge. Atmospheric fluxes appear mainly enhanced as a result of a stronger sensitivity to fluxes from the upwind surface. A sensitivity analysis shows that the fetch over forest, necessary to reach equilibrium between atmospheric fluxes and surface fluxes, tends to be longer for scalar fluxes as compared to momentum fluxes. With increasing forest density, atmospheric fluxes deviate even more strongly from surface fluxes, but over shorter fetches. It is concluded that scalar fluxes over forests are commonly affected by inhomogeneous turbulence over large fetches downwind of an edge. It is recommended to take horizontal variations in turbulence into account when the footprint is calculated for atmospheric flux measurements downwind of a forest edge. The spatially integrated footprint is recommended to describe the ratio between the atmospheric flux and the average surface flux in the footprint.  相似文献   

12.
北京海淀地区大气边界层的数值模拟研究   总被引:10,自引:1,他引:10  
采用北京大学的三维复杂地形中尺度数值模式,利用Landsat-TM卫星影像图得到的地表状况计算陆气之间的能量平衡过程,模拟了北京海淀地区大气边界层的风、温场结构以及污染物浓度分布,进而模拟了由于汽车尾气的排放而转化成的气溶胶的浓度分布.模拟表明城郊之间存在热岛效应,边界层风场受到热岛的热力作用以及地形的动力作用影响.污染物及气溶胶浓度也存在城乡差别,最大浓度出现在城区的下风方向.  相似文献   

13.
A three-dimensional, non-hydrostatic mesoscale model is used to study boundary-layer structure over an area characterized by the city of Copenhagen, the Øresund strait, and adjacent coastal farmland. Simulations are compared with data obtained on June 5, 1984 during the Øresund experiment.Under moderately strong wind conditions, a stable internal boundary layer (IBL) developed over the Øresund strait during the day. Near-surface winds decelerate over water due to diminished vertical momentum transfer.The turbulent kinetic energy field closely reflects the surface roughness distribution due to the imposed relatively strong wind forcing. TKE budgets over water, farmland and a city area are discussed by inspection of vertical profiles of the individual terms. The buoyancy term is used to indicate IBL heights because it changes sign at the boundary between different stability regimes. Measured and simulated dissipation rates show a decrease in the transition zone as the air travels over water and an abrupt increase when the IBL over a downwind city area is intersected. The top of the stable IBL is characterized by a minimum in the vertical TKE profile.  相似文献   

14.
In this study a moderate-sized alfalfa field was downwind of a large dry region. Measured vertical profiles of temperature, humidity and wind at upwind and downwind sides of the field were used to calculate the short-term evaporation rate, as well as the contribution of horizontally transported or advected heat energy to the evaporation. The vertical profiles must be measured at least to the height at which air is modified by the new surface. In this case that height was as large as 18 m over a several hundred meter long traverse.Evaporation rates calculated by such an approach were in very close agreement to surface fluxes measured by an eddy correlation system near the surface. The difference between calculated and measured values averaged 9.5%. The reduction in sensible heat content of the air of the control volume was substantial during passage over the field. If all this energy was assumed to have been used in evaporation, then the advection of heat contributed from 35 to 86% of the total evaporation rate.It appears that for an inhomogeneous surface, knowledge of the distortion of some properties of local boundary layers can yield reliable estimates of local evaporation. The approach has little empiricism as it is based on simple conservation laws.  相似文献   

15.
The turbulent heat flux from arctic leads   总被引:2,自引:0,他引:2  
The turbulent transfer of heat from Arctic leads in winter is one of the largest terms in the Arctic heat budget. Results from the AIDJEX Lead Experiment (ALEX) suggest that the sensible component of this turbulent heat flux can be predicted from bulk quantities. Both the exponential relation N = 0.14R x 0.72 and the linear relation N = 1.6 × 10–3 R x+ 1400 fit our data well. In these, N is the Nusselt number formed with the integrated surface heat flux, and R x is the Reynolds number based on fetch across the lead. Because of the similarity between heat and moisture transfer, these equations also predict the latent heat flux. Over leads in winter, the sensible heat flux is two to four times larger than the latent heat flux.The internal boundary layer (IBL) that develops when cold air encounters the relatively warm lead is most evident in the modified downwind temperature profiles. The height of this boundary layer, , depends on the fetch, x, on the surface roughness of the lead, z 0 and on both downwind and upwind stability. A tentative, empirical model for boundary layer growth is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4baFfea0dXde9vqpa0lb9% cq0dXdb9IqFHe9FjuP0-iq0dXdbba9pe0lb9hs0dXda91qaq-xfr-x% fj-hmeGabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes% 7aKbqaaiaadQhadaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0JaeqOS% di2aaeWaaeaacqGHsisldaWcaaqaaiaadQhadaWgaaWcbaGaaGimaa% qabaaakeaacaWGmbaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGim% aiaac6cacaaI4aaaaOWaaeWaaeaadaWcaaqaaiaadIhaaeaacaWG6b% WaaSbaaSqaaiaaicdaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqa% baGaaGimaiaac6cacaaI0aaaaaaa!472D!\[\frac{\delta }{{z_0 }} = \beta \left( { - \frac{{z_0 }}{L}} \right)^{0.8} \left( {\frac{x}{{z_0 }}} \right)^{0.4} \] where L is the Obukhov length based on the values of the momentum and sensible heat fluxes at the surface of the lead, and is a constant reflecting upwind stability.Velocity profiles over leads are also affected by the surface nonhomogeneity. Besides being warmer than the upwind ice, the surface of the lead is usually somewhat rougher. The velocity profiles therefore tend to decelerate near the surface, accelerate in the mid-region of the IBL because of the intense mixing driven by the upward heat flux, and rejoin the upwind profiles above the boundary layer. The profiles thus have distinctly different shapes for stable and unstable upwind conditions.  相似文献   

16.
Temperature response to future urbanization and climate change   总被引:2,自引:0,他引:2  
This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990–2009) and future (2040–2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.  相似文献   

17.
For investigating the physical reasons for the observed increase in rainfall, field observational programmes have been undertaken in the upwind and downwind of industrial complexes of the Bombay region. During these programmes, surface observations of trace gases ( SO2 and NOx), giant size hygroscopic and nonhygroscopic aerosols and rain water samples have been made in the years 1972, 1973 and 1974. Aircraft observations of trace gases (SO2 and NH3), giant size aerosols, cloud condensation nuclei as well as of cloud liquid water content, cloud droplet spectra and temperature have been made on limited days during August 1974. Results of the analysis of the surface and aircraft observations have indicated that the chemical, thermal and microphysical conditions of clouds are markedly different in the upwind and downwind regions of the industrial complexes in the Bombay region. It is hypothesised that observed increase in rainfall in the region following the industrialisation is due to the differences in the chemical and physical conditions in the downwind clouds.  相似文献   

18.
This paper extends previous large-eddy simulations of the convective boundary layer over a surface with a spatially varying sensible heat flux. The heat flux variations are sinusoidal and one-dimensional. The wavelength is 1500 or 4500 m (corresponding to 1.3 and 3.8 times the boundary-layer depth, respectively) and the wind speed is 0, 1 or 2 m s-1.In every case the heat flux variation drives a mean circulation. As expected, with zero wind there is ascent over the heat flux maxima. The strength of the circulation increases substantially with an increase in the wavelength of the perturbation. A light wind weakens the circulation drastically and moves it downwind. The circulation has a significant effect on the average concentration field from a simulated, elevated source.The heat flux variation modulates turbulence in the boundary layer. Turbulence is stronger (in several senses) above or downwind of the heat flux maxima than it is above or downwind of the heat flux minima. The effect remains significant even when the mean circulation is very weak. There are effects too on profiles of horizontal-average turbulence statistics. In most cases the effects would be undetectable in the atmosphere.We consider how the surface heat flux variations penetrate into the lower and middle boundary layer and propose that to a first approximation the process resembles passive scalar diffusion.The research reported in this paper was conducted while the first author was on study leave at Colorado State University.  相似文献   

19.
A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered.The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients.Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.  相似文献   

20.
城市化对珠江三角洲强雷暴天气的可能影响   总被引:17,自引:5,他引:17  
通过对2004年8月11日午后发生在珠江三角洲地区的一次强雷暴天气的高分辨数值模拟,研究了城市化发展可能对雷暴活动的影响问题,主要考察了与城市土地利用类型改变相关的“城市热岛”的形成和演变特征,城区粗糙度增大可能引起的低层辐合的增强过程,及其与雷暴发展强度变化的关系。结果表明:模拟的雷暴发展和演变过程与这一地区城市化的发展有密切的联系。引进了更加真实的关于珠江三角洲地区的土地利用类型资料之后,耦合了陆面模式Noah LSM的MM5模式可以更加成功地模拟出强雷暴天气的发展和演变过程。雷暴系统移经主要城市区后在珠江口西岸的增强过程与这一地区“城市热岛”的效应有关。中午时热岛开始形成于广州城区的上空,之后向南移动,范围扩大。另外,城区粗糙度增大引起的低层辐合增强可能在雷暴发展和演变过程中也起到了作用。模拟的与城市影响有关的低层辐合主要位于500 m以下的近地面层,开始时形成于城市的上风方向,并在下风方向增强, 由此引起的强烈上升运动有利于新的对流的启动和发展,促使雷暴强度增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号