首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
显生宙海水成分、碳酸盐沉积和生物演化系统研究进展   总被引:6,自引:2,他引:6  
简述了显生宙海水成分演化的特征、识别标志和成因解释模型以及存在的问题和今后研究的方向.不同时期海水的成分的差异,特别是海水的x(Mg)/x(Ca)值,导致了文石海、方解石海时期的碳酸盐沉积和早期成岩作用均存在差异,甚至影响了盆地深部成岩流体的特征.显生宙海生生物的演替和盛衰,特别是简单生物(如钙藻和海绵)和高产率生物(如造礁生物和碳酸盐沉积物主要生产者),明显体现了海水的x(Mg)/x(Ca)值周期性变化对海生生物的影响.这种影响也同样体现在古生代末期的生物大绝灭及随后的生物复苏样式上,在生物更替事件研究中应引起重视.因此,生物与环境的协同演化研究必须从地球系统科学的角度展开.  相似文献   

2.
本文以棉花坑(302)铀矿床成矿期紫黑色萤石、浅粉红色方解石及赤红色微晶石英等含铀脉石矿物及与之共生的黄铁矿为研究对象,采用流体包裹体热力学、群体成分分析及黄铁矿微量元素分析等方法,对成矿流体演化特性及对成矿过程的指示与约束开展了研究。研究表明,成矿期的萤石、方解石、微晶石英中流体包裹体类型以富液相两相Na Cl-H_2O型为主,平均均一温度分别为185. 8℃、177. 0℃、140. 4℃,平均盐度分别为2. 24%Na Cleqv、1. 36%Na Cleqv、1. 75%Na Cleqv,矿床流体具有中低温低盐度特征;计算出平均成矿压力分别为39. 5MPa、38. 0MPa、30. 1MPa,平均成矿深度分别为1. 5km、1. 3km、1. 1km。流体包裹体群体成分显示成矿流体中富含K~+、Na~+、Ca~(2+)等阳离子和HCO_-~3、F~-、SO_4~(2-)等阴离子及CO_2、H_2O等气相成分。这些脉石矿物为成矿期不同阶段沉淀的产物,随着成矿流体温度、压力逐渐降低,流体存在演化分异和不混溶现象,流体内的∑M+/∑M-逐渐升高,矿物沉淀按先析出萤石、其次方解石、最后微晶石英的顺序进行。成矿期黄铁矿Y/Ho平均比值变化显示,矿物沉淀过程逐渐改变了成矿流体性质,使得Zr/Hf、Nb/La、Co/Ni等稀土、高场强元素平均比值逐渐变小,还原性的成矿环境也会发生轻微波动;铀元素在流体演化的最晚阶段才大量与微晶石英一同沉淀,沉淀出的黄铁矿U/Th平均比值逐渐升高。  相似文献   

3.
古盐湖卤水温度对钾盐沉积的控制作用探讨   总被引:2,自引:0,他引:2  
古盐湖卤水的温度对钾盐沉积的控制作用的定量研究是钾盐成矿机理分析的重点和难点。本文分析和测试陕北盐盆奥陶系马家沟组、四川盆地三叠系嘉陵江组、云南兰坪-思茅盆地白垩系及老挝沙空那空盆地白垩系等八个含盐系的石盐岩中的流体包裹体,并利用均一温度计算了古盐湖的蒸发速率。若以老挝白垩纪时盐湖的蒸发速率为标准值100,陕北奥陶纪、四川三叠纪、云南白垩纪的蒸发速率标准值分别为54、68和90,而目前在老挝和云南白垩系都找到了一定规模的钾盐矿,因此高温(气温及水温)是盐湖成钾的有利条件,在卤水演化成钾的过程中可以起到重要的"催化"作用。  相似文献   

4.
板块构造对海相钾盐矿床分布与成矿模式的控制   总被引:5,自引:0,他引:5  
表生钾盐矿床主要沉积于陆壳板块上的陆表海盆地中,其沉积受制于全球板块运动,具体影响表现在板块的规模、边界特征、漂移历史与古纬度、古气候等的控制作用。在巨型稳定克拉通上,出现巨型陆表海盆,沉积分布广、厚度大的巨型钾盐矿床或矿集区,矿床沉积类型属于化学岩型即碳酸盐岩型钾盐矿;板块汇聚区域,如特提斯造山带,出现较多的小陆块并形成较小规模的海相及海陆交互相盆地,也形成了一些厚度大的巨型-超大型钾盐矿床或矿床群,沉积类型有化学岩型及碎屑岩型钾矿两类;而大陆板块边缘及其内部,出现裂谷盆地成钾,沉积环境可以从海相到非海相及过渡类型,钾盐沉积规模不等,也可出现超大型矿床,基本属于碎屑岩型钾矿;最后,在大陆板块内部出现典型陆相钾盐沉积。从时代上看,稳定巨型克拉通板块成钾,主要出现于古生代;而板块汇聚时期成钾,主要发生在中生代;裂谷成钾则主要出现在新生代,典型陆相钾盐矿床则出现在第四纪。由此可见,从古生代到新生代,地球表生成钾模式发生了重大转换。从成钾物质来源看,稳定克拉通海盆主要以海水补给为主,特提斯小陆块的海相盆地成钾物质,以海水补给为主,可能存在非海相(以火山活动带来深部物质等)的补给;而裂谷成钾物质补给,则是海相与非海相混合型,甚至一些盆地以非海相物质补给为主。从古生代到中生代,再到新生代,成钾盆地规模快速变小;所形成的钾盐资源量也呈相应递减变化规律。中国小陆块的漂移演化历史受控于全球主要板块的构造演化,其海相盆地成钾作用也应符合世界主要钾盐成矿的基本规律,因此,掌握全球板块对钾盐成矿基本约束规律,有助于研究中国小陆块海相成钾规律,指导中国海相找钾勘查突破。  相似文献   

5.
海水,大气化学演化对沉积矿床形成,演化的制约   总被引:1,自引:0,他引:1  
本文重点探讨了海水、大气化学演化与沉积矿床的形成和演化的关系。依据模拟实验结果提出了大气的化学组成制约着风化淋滤作用的性质和海盆提供矿质的能力;海水pH、Eh值的波动演化规律制约着海水中矿质的富集、分异和沉淀成矿的过程;海水化学环境的波动制约着沉积作用的旋回性和成矿作用的继承性;关于地史中海水、大气的化学环境变化与大型和超大型沉积矿床成矿的关系以及在一个盆地中为什么形成了这种矿床而不是另一种矿床。  相似文献   

6.
海相蒸发岩同样含有水溶液(卤水)、液态碳氢化合物和气体,赋存于盐矿物包裹体中。流体包裹体中的溶液主要组分Na,K,Mg,Ca,Cl 和SO_4及少量的Li 和Br 元素需用直接法测定数量。直径大于或等于300μm 的单个流体包裹体可用精密光学仪器EFI 抽取溶液,用离子色谱法对所抽取的溶液进行定量分析。全部调整和准备工作阶段均是借助于特殊结构的万用载物台与立体显微镜相连来完成的。每个阶段都用一台彩色摄像机、监视器及录相机进行观测与记录。除去样品的准三维图像之外。用EFI 仪还可对包裹体中所发生的液体的排气、气泡的压力均衡等现象进行观察,并可测定包裹体成分,等。EFI 仪扩大了蒸发岩的研究领域,特别是关于海相盐矿床的起源及变质情况。  相似文献   

7.
8.
金顶矿床是世界上形成时代最新且唯一的陆相沉积岩容矿的超大型铅锌矿床,受人关注.金顶矿石中矿物的交生关系表明内生流体成矿经历了石英-闪锌矿-方铅矿、闪锌矿-方铅矿-天青石、方铅矿-方解石-天青石-石膏三个矿化阶段,黄铁矿在各矿化阶段中均有形成,不同世代矿物从产状、结构、组合关系等得以区分;矿物流体包裹体中包括REE在内的几十种微量元素的配分曲线和含量分布不因寄主矿物种类而明显变化,不同矿化阶段矿物流体包裹体微量元素组成是大规模成矿流体过程的重要约束;大规模成矿从第1到第3矿化阶段,内生成矿流体∑REE逐步升高(1.34×10-9~6.28×10-9~297.03×10-9),轻重REE分异越趋显著,系统从还原性演化为氧化性,微量元素组合趋于复杂,流体中成矿元素(Zn 13.594×10-9~29331.810×10-9)不断富集(Zn依次是中国陆壳的0.16×10-3~0.20×10-3倍、0.041~0.193倍、0.028~0.341倍);早-中阶段的流体成矿可能是快速的,中-晚阶段趋缓;深、浅部两种不同性质流体混合可能是流体大规模成矿的基本过程.  相似文献   

9.
大量的流体包裹体研究表明,流体相分离作用是造成热液矿床矿质沉淀的重要机制之一。本文对几种常见的成矿流体相分离深度-温度场特征进行了讨论,包括不同流体体系在不同深度、温度条件下的相分离曲线的特征,盐类及二氧化碳对流体相分离场的影响以及不同压力状态下相分离场的差异。在此基础上,通过一些钨锡矿床的流体包裹体研究实例,讨论了流体相分离深度-温度场对矿床的定位(尤其是矿床的产出部位与岩体接触带的距离)的意义。  相似文献   

10.
基于海相石盐流体包裹体的古海水演化热力学模拟   总被引:2,自引:0,他引:2  
传统观点认为地质时期海水成分一成不变,然而包裹体测试技术的迅速发展,揭示出显生宙以来海水成分至少发生过两次大的旋回变化。本文基于世界多个海相沉积盆地的原生石盐包裹体实测数据,探讨了显生宙以来古海水地球化学、水化学类型、蒸发岩矿物组合特征的显著变化,并结合EQL/EVP卤水蒸发平衡模型,定量模拟了两种典型海水的蒸发演化过程、析盐规律和矿物组合特征,分析和探讨了中国海相沉积盆地的成钾前景。应用Spencer相图,揭示出在过去的600 Ma期间,古海水成分点在Cl-SO4和Ca-Cl两个相区内随时间发生周期性的震荡变化,志留纪、泥盆纪、侏罗纪和白垩纪的海水类型与现代海水迥然不同,为典型的Ca-Cl型水。Mg-2KSO4/Mg-Ca-2KJnecke相图分析结果显示,这些时期的石盐包裹体成分,位于富CaCl2、贫MgSO4的Mg-Ca-2K相图中光卤石、钾石盐稳定相区,指示原始海水相对于现代海水具有富Ca、贫Mg的特征,其析出的典型矿物组合主要有石盐、钾石盐、光卤石和溢晶石等。而新元古代、二叠纪和第三纪大部分石盐包裹体成分,都落到了Mg-2KSO4相图上的钾盐镁矾和钾石盐相区,和现代海水成分较为类似,具有富Mg2+、SO2-4的特征,其析出的典型矿物组合包括石盐、钾盐镁矾、硫镁矾、钾石盐和光卤石等。EQL/EVP定量模拟结果显示,富SO4-Mg型的海水和富CaCl型的古海水,蒸发演化路径和矿物析出序列截然不同,Ca-Cl型的海水更易形成优质钾盐矿床,有利的成钾时段为寒武纪-早石炭世、侏罗世-新生代早中期。  相似文献   

11.
We present results from a long term geochemical cycling model, with a focus on the sensitivity of atmospheric carbon dioxide, oxygen, and the major element composition of seawater to seafloor spreading rates. This model incorporates rock weathering, basalt–seawater exchange reactions, and the formation and destruction of chemical sediments and organic matter. Hydrothermal reactions between seafloor and seawater involving calcium, magnesium, sodium, potassium, sulfate and carbon are the high temperature counterparts to low temperature redox, weathering, precipitation and diagenetic reactions. A major source of uncertainty is the extent to which these exchange fluxes are controlled by seafloor spreading rate. In addition, the return fluxes of these components to the atmospheric and primary silicate reservoirs reflect not only the overall rates of subduction and metamorphism, but the distribution of the overlying sedimentary burden and authigenic minerals formed during basalt alteration as well. In particular, we show how the stoichiometry of exchange fluxes (Mg/Ca and SO4/Ca) may buffer atmospheric CO2 and O2 concentrations.  相似文献   

12.
Julian A. Pearce   《Lithos》2008,100(1-4):14-48
Two geochemical proxies are particularly important for the identification and classification of oceanic basalts: the Th–Nb proxy for crustal input and hence for demonstrating an oceanic, non-subduction setting; and the Ti–Yb proxy for melting depth and hence for indicating mantle temperature and thickness of the conductive lithosphere. For the Th–Nb proxy, a Th/Yb–Nb/Yb projection demonstrates that almost all oceanic basalts lie within a diagonal MORB–OIB array with a principal axis of dispersion along the array. However, basalts erupted at continental margins and in subduction zones are commonly displaced above the MORB–OIB array and/or belong to suites with principal dispersion axes which are oblique to the array. Modelling of magma–crust interaction quantifies the sensitivity of the Th–Nb proxy to process and to magma and crustal compositions. For the Ti–Yb proxy, the equivalent Ti/Yb–Nb/Yb projection features a discriminant boundary between low Ti/Yb MORB and high Ti/Yb OIB that runs almost parallel to the Nb/Yb axis, reflecting the fact that OIB originate by melting beneath thicker lithosphere and hence by less melting and with residual garnet. In the case of volcanic-rifted margins and oceanic plume–ridge interactions (PRI), where hot mantle flows toward progressively thinner lithosphere (often becoming more depleted in the process), basalts follow diagonal trends from the OIB to the MORB field. Modelling of mantle melting quantifies the sensitivity of the Ti–Nb proxy to mantle potential temperature and lithospheric thickness and hence defines the petrogenetic basis by which magmas plot in the OIB or MORB fields. Oceanic plateau basalts lie mostly in the centre of the MORB part of that field, reflecting a high degree of melting of fertile mantle. Application of the proxies to some examples of MORB ophiolites helps them to be further classified as C (contaminated)-MORB, N (normal)-MORB, E (enriched)-MORB and P (plume)-MORB ophiolites, which may add a useful dimension to ophiolite classification. In the Archean, the hotter magmas, higher crustal geotherms and higher Th contents of contaminants all result in widespread crustal input that is easy to detect geochemically with the Th–Nb proxy. Application of this proxy to Archean greenstones demonstrates that almost all exhibit a crustal component even when reputedly oceanic. This indicates, either that some interpretations need to be re-examined or that intra-oceanic crustal input is important in the Archean making the proxy less effective in distinguishing oceanic from continental settings. The Ti–Yb proxy is not effective for fingerprinting Archean settings because higher mantle potential temperatures mean that lithospheric thickness is no longer the critical variable in determining the presence or absence of residual garnet.  相似文献   

13.
To investigate the potential of tourmaline as a geochemical monitor, a comprehensive dataset on major, minor and trace element concentrations as well as Fe3+/ΣFe ratios of tourmaline is presented. The dataset includes samples from five plutonic complexes related to diverse magmatic to hydrothermal stages of the Cornubian Batholith (SW England). Tourmaline composition found in barren and cassiterite-bearing samples include all three primary tourmaline groups and tourmaline species with the general endmembers schorl, dravite, elbaite, uvite, feruvite, foitite and Mg-foitite.Based on textures and compositions, it is possible to distinguish not only between late-magmatic and hydrothermal tourmaline, but also between several formation stages. Hence, tourmaline monitors late-magmatic processes and the partitioning of elements during exsolution of an aqueous phase. For example, in hydrothermal tourmaline Sn is strongly enriched, while Ti, Cr, V and Sc are depleted compared to late-magmatic tourmaline of the same sample. Several tourmaline generations that precipitated from magmatic fluids can be distinguished with differing major and minor elements and REE patterns depending on the composition of the melt from which they were expelled from. Strongly zoned tourmaline allows for unraveling the hydrothermal history of a distinct location including ore precipitation. The precipitation of SnO2 in the study area was probably caused by mixing between acidic, reduced, Sn-bearing magmatic fluids and oxidized meteoric fluids, which is in agreement with London and Manning (1995) and Williamson et al. (2000). Hence, the ability of tourmaline composition to monitor changes in Sn concentration and redox conditions in hydrothermal fluids has potential as an exploration tool.  相似文献   

14.
Carbon isotopic composition of marine carbonates is a record for various important geological events in the process of earth development and evolution. The carbonates of Carboniferous, Permian and Triassic, as the transition from Paleozoic to Mesozoic-Cenozoic have very high 13C value. Taking this as the main point, and combined with the oxygen, strontium isotopic composition in carbonates, distribution of carbonate basin area through geologic time, the correlation of carbon isotopic composition of marine carbonates to sea level change, organic carbon burial flux, exchange of CO2 content in atmosphere and ocean, and long cycle evolution of the earth ecosystems were approached. The results are shown as follows: ①The interval of 13C >3‰ during Phanerozoic was concentrated in Carboniferous, Permian and the beginning of Triassic, but the beginning of Triassic was characterized by higher frequency and larger fluctuations in 13C value during a short time, whereas the Carboniferous-Permian presented a continuously stable high 13C value, indicating a larger amount of organic carbon accumulation in this time interval. Relatively high 18O values during this time was also observed, showing a long time of glaciations and cold climate, which suggest a connection among rapid organic carbon burial, cold climate, as well as pCO2 and pO2 states of atmosphere. ②The over consumption of atmosphere CO2 by green plants during the time with high 13C of seawater forced CO2 being transferred from ocean to atmosphere for the balance, but the decrease in the seawater amount and water column pressure caused by the global cooling could weaken dissolution capacity of CO2 in seawater and carbon storage of marine carbonates, and also reduce the carbonate sedimentary rate and decrease the carbonate basin area globally from Devonian to Carboniferous and Permian. During the middle-late Permian carbonate was widely replaced by siliceous sediments even though in shallow carbonate platform, which resulted in the decrease of marine invertebrates, suggesting the Permian chert event should be global. ③The Phanerozoic 87Sr/86Sr trend of seawater showed a sharp fall in Permian and drop to a minimum at the end of the Permian, indicting input of strontium from the submarine hydrothermal systems (mantle flux). Such process should accompany with a supplement of CO2 from deep earth to atmosphere and ocean system, but the process associated with widespread volcanism and rises of earth’s surface temperature pricked up the mass extinction during the time of end Permian. ④Cold climate and increase of continental icecap volume, the amalgamation of northern Africa and Laurentia continentals were the main reasons responsible for the sea level drop, but the water consumption result from the significantly increased accumulation of organic carbon should also be one of the reasons for the sea level drop on the order of tens of meters. ⑤The mass extinction at the end Permian was an inevitable event in the process of earth system adjustment. It was difficult for marine invertebrates to survive because of the continuously rapid burial of organic carbon, and of the decrease of sea water amount and its dissolution ability to CO2. At last, at the end of Paleozoic, the supplement of CO2 to atmosphere and ocean by widely magma activities resulted in a high temperature of earth surface and intensified mass extinction.  相似文献   

15.
The changing vision of marine minerals   总被引:1,自引:0,他引:1  
Peter A. Rona   《Ore Geology Reviews》2008,33(3-4):618-666
Non-fuel marine minerals are reviewed from the perspective of resources and their value as active analogs that can advance understanding of types of ancient ore deposits that formed in marine settings. The theory of plate tectonics is the largest influence in expanding our vision of marine minerals and in developing our understanding of geologic controls of mineralization in space and time. Prior to the advent of plate tectonics, we viewed the ocean basins as passive sinks that served as containers for particulate and dissolved material eroded from land. This view adequately explained marine placer deposits (heavy minerals and gems), aggregates (sand and gravel), and precipitates (phosphorites and manganese nodules). Although numerous sites of placer mineral deposits are known on continental shelves worldwide, current activity pertains to diamond mining off southwestern Africa, tin mining off southeastern Asia, and intermittent gold mining off northwestern North America, which are all surpassed economically by worldwide recovery of marine sand and gravel, in turn dwarfed by offshore oil and gas. With the advent of plate tectonics, plate boundaries in ocean basins are recognized as active sources of mineralization in the form of hydrothermal massive sulfide deposits and proximal lower-temperature deposits hosted in oceanic crust (mafic at ocean ridges and felsic at volcanic island arcs), and of magmatic Ni–Cu sulfide, chromite and PGE deposits inferred to be present in the oceanic upper mantle–lower crust based on their occurrence in ophiolites. Some 300 sites of hydrothermal active and relict mineralization, most of them minor, are known at this early stage of seafloor exploration on ocean ridges, in fore-arc volcanoes, at back-arc spreading axes, and in arc rifts; deposits formed at spreading axes and transported off-axis by spreading are present in oceanic lithosphere but are virtually unknown. The TAG (Trans-Atlantic Geotraverse) hydrothermal field in the axial valley of the Mid-Atlantic Ridge (latitude 26° N) is considered to exemplify a major Volcanogenic Massive Sulfide (VMS) deposit forming at a spreading axis. The most prospective of these occurrences lie within the 200 nautical mile (370 km)-wide Exclusive Economic Zone (EEZ) of the nations of the volcanic island arcs of the western Pacific where metal content of massive sulfides (Ag, Au, Ba, Cu, Pb, Sb, Zn) exceeds that at ocean ridges. Plate tectonics early provided a framework for mineralization on the scale of global plate boundaries and is providing guidance to gradually converge on sites of mineralization through regional scales of plate reorganization, with the potential to elucidate the occurrence of individual deposits (e.g., Eocene Carlin-type gold deposits). Investigation of the spectrum of marine minerals as active analogs of types of ancient mineral deposits is contributing to this convergence. Consideration of questions posed by Brian Skinner (1997) of what we do and do not know about ancient hydrothermal mineral deposits demonstrates the ongoing advances in understanding driven by investigation of marine minerals.  相似文献   

16.
The mineral and inorganic chemical composition of five types of samples from the Pernik subbituminous coals and their products generated from the Pernik preparation plant were studied. They include feed coal, low-grade coal, high-grade coal, coal slime, and host rock. The mineral matter of the coals contains 44 species that belong mainly to silicates, carbonates, sulphates, sulphides, and oxides/hydroxides, and to a lesser extent, chlorides, biogenic minerals, and organic minerals. The detrital minerals are quartz, kaolinite, micas, feldspars, magnetite, cristobalite, spessartine, and amphibole. The authigenic minerals include various sulphides, silicates, oxihydroxides, sulphates, and carbonates. Several stages and substages of formation were identified during the syngenetic and epigenetic mineral precipitations of these coals. The authigenic minerals show the greatest diversity of mineral species as the epigenetic mineralization (mostly sulphides, carbonates, and sulphates) dominates qualitatively and quantitatively. The epigenetic mineralization was a result of complex processes occurring mostly during the late development of the Pernik basin. These processes indicate intensive tectonic, hydrothermal and volcanic activities accompanied by a change from fresh to marine sedimentation environment. Thermally altered organic matter due to some of the above processes was also identified in the basin. Most of the trace elements in the Pernik coals (Mo, Be, S, Zr, Y, Cl, Ba, Sc, Ga, Ag, V, P, Br, Ni, Co, Pb, Ca, and Ti) show an affinity to OM and phases intimately associated with OM. Some of the trace elements (Sr, Ti, Mn, Ba, Pb, Cu, Zn, Co, Cr, Ni, As, Ag, Yb, Sn, Ga, Ge, etc.) are impurities in authigenic and accessory minerals, while other trace elements (La, Ba, Cu, Ce, Sb, Bi, Zn, Pb, Cd, Nd, etc.) occur as discrete phases. Elements such as Sc, Be, Y, Ba, V, Zr, S, Mo, Ti, and Ga exceed Clarke concentrations in all of the coal types studied. It was also found that a number of elements in the Pernik coals (F, V, As, Pb, Mo, Li, Sr, Ti, Ga, Ni, Ge, Cr, Mn, etc.) reveal mobility in water and could have some environmental concerns.  相似文献   

17.
Detailed melt and fluid inclusion studies in quartz hosts from the Variscan Ehrenfriedersdorf complex revealed that ongoing fractional crystallization of the highly evolved H2O-, B-, and F-rich granite magma produced a pegmatite melt, which started to separate into two immiscible phases at about 720°C, 100 MPa. With cooling and further chemical evolution, the immiscibilty field expanded. Two conjugate melts, a peraluminous one and a peralkaline one, coexisted down to temperatures of about 490°C. Additionally, high-salinity brine exsolved throughout the pegmatitic stage, along with low-density vapor. Towards lower temperatures, a hydrothermal system gradually developed. Boiling processes occurred between 450 and 400°C, increasing the salinities of hydrothermal fluids at this stage. Below, the late hydrothermal stage is dominated by low-salinity fluids. Using a combination of synchrotron radiation-induced X-ray fluorescence analysis and Raman spectroscopy, the concentration of trace elements (Mn, Fe, Zn, As, Sb, Rb, Cs, Sr, Zr, Nb, Ta, Ag, Sn, Ta, W, rare earth elements (REE), and Cu) was determined in 52 melt and 8 fluid inclusions that are representative of distinct stages from 720°C down to 380°C. Homogenization temperatures and water contents of both melt and fluid inclusions are used to estimate trapping temperatures, thus revealing the evolutionary stage during the process. Trace elements are partitioned in different proportions between the two pegmatite melts, high-salinity brines and exsolving vapors. Concentrations are strongly shifted by co ncomitant crystallization and precipitation of ore-forming minerals. For example, pegmatite melts at the initial stage (700°C) have about 1,600 ppm of Sn. Concentrations in both melts decrease towards lower temperatures due to the crystallization of cassiterite between 650 and 550°C. Tin is preferentially fractionated into the peralkaline melt by a factor of 2–3. While the last pegmatite melts are low in Sn (64 ppm at 500°C), early hydrothermal fluids become again enriched with about 800 ppm of Sn at the boiling stage. A sudden drop in late hydrothermal fluids (23 ppm of Sn at 370°C) results from precipitation of another cassiterite generation between 400 and 370°C. Zinc concentrations in peraluminous melts are low (some tens of parts per million) and are not correlated with temperature. In coexisting peralkaline melts and high-T brines, they are higher by a factor of 2–3. Zinc continuously increases in hydrothermal fluids (3,000 ppm at 400°C), where the precipitation of sphalerite starts. The main removal of Zn from the fluid system occurs at lower temperatures. Similarly, melt and fluid inclusion concentrations of many other trace elements directly reflect the crystallization and precipitation history of minerals at distinctive temperatures or temperature windows.  相似文献   

18.
The Ailaoshan aquamarine-bearing pegmatites are associated with Proterozoic metamorphic rocks in the southern portion of the Ailaoshan fault-folded complex.The gem-bearing pegmatite mineralization zones of the region occur in areas generally consistent with the regional tectonic trend.The pegmatites are found in metamorphic rocks,migmatites and in the inner/outer contact zones of gneissoid granites. The Rb-Sr isochron drawn for the pegmatites is 26~31 Ma,(i.e.in Himalayan).The homogenization temperatures of melt and liquid inclusions in minerals vary from 185 to 920℃,which are comparable to the inclusions observed in banded migmatites and ptygmatic quartz veins in the surrounding metamorphic rocks. The mineralization fluids of the pegmatite were rich in HCO_3 and CO_2,and their compositional assemblages are comparable to metamorphic fluids.Results of H,O,C,Si etc.isotopic analyses and REE,and Be analyses indicates that the sources of mineralization components that formed the pegmatites are closely associated with metamorphic fluids and the enclosing metamorphic rocks. A pegmatite structure simulation experiment was conducted at high temperature and pressure(840℃and 1,500×105Pa.),with various metamorphic rock samples in a water-rich and volatile-rich environment.When the liquidus was reached,the temperature was gradually decreased at the rate of 5~10℃/day over a time period of three months.SEM energy-dispersive spectrum analyses were performed on the experimental products.A series of pegmatoid textures were observed including zonal texture,megacryst texture,drusy cavities,crystal druses,and vesicular texture along with more than ten types of minerals including plagioclase,microcline,quartz and biotite.Different metamorphic rock melts generated different mineral assemblages.Experiment results revealed that the partial melting of metamorphic rocks could form melts similar to pegmatite magmas. Based upon the geological characteristics,geochemistry,and pegmatite texture simulation experimental results,it is concluded that the mineralization components of Ailaoshan aquamarine-bearing pegmatites came from metamorphic rocks.The petrogenetic model for the origin of pegmatites is related to ultrametamorphism and metamorphic anatexis.  相似文献   

19.
The Wiluna lode-gold deposits are located in the Archean Wiluna greenstone belt, in the northern sector of the Norseman-Wiluna belt in the Yilgarn Craton of Western Australia. They are hosted in subgreenschist facies meta-basalts, and controlled by the Wiluna strike-slip fault system and associated shear veins and breccias. The 13 individual lode-gold deposits have produced around 115 t Au from 1901 to 1946 and 1986 to today. Historically, they also produced 38.3 t As and 3.5 t Sb. Gold formed in two stages: stage 1 gold-pyrite-arsenopyrite is finely disseminated in the wallrock and breccia fragments, whereas stage 2 gold-stibnite is located in massive shear veins and breccia matrix, as fracture-fill and in banded-colloform textured veins. Stibnite-gold orebodies only occur in some of the deposits (e.g., Moonlight and northern part of the West Lode) and also display a restricted vertical extent, being preserved only in the uppermost 200 m of stibnite-bearing lodes.Petrographic, conventional, and infrared microthermometric and laser-Raman analysis on stibnite-bearing quartz veins and breccias reveal that the antimony- and gold-rich hydrothermal fluid was of mixed H2O-NaCl-CO2±CH4 type. Microthermometric measurements reveal maximum homogenization temperatures of 340 °C (average 290±25 °C), and a wide range of salinities between 0.2 and 23 eq. wt% NaCl. Aqueous-carbonic fluid inclusions contain variable XCO2+CH4 (0.03 to 0.82), with the carbonic phase containing a maximum XCH4 of 0.21.Combined petrographic and microthermometric evidence suggests that the fluid inclusion properties reflect fluid immiscibility of a low-salinity, medium XCO2+CH4, homogeneous parent fluid at about 290 °C and pressures between 700 and 1,700 bar. Fluid immiscibility was triggered by cyclic pressure release during fault-zone movement. The decompression (adiabatic cooling) of the hydrothermal fluids shifted the ore fluid to lower temperatures, significantly reduced the degree of stibnite undersaturation, and caused stibnite to precipitate. The deposition of stibnite reduced the ore-fluid H2S concentration, thereby destabilized gold bisulfide complexes in solution, and caused gold precipitation locally. This mechanism explains the intimate spatial association of stibnite and gold in quartz veins and breccias in the stibnite-gold orebodies at Wiluna.Editorial handling: B. Lehmann  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号