首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Remote sensing studies of the Central Andean volcanic province between 18°–27°S with the Landsat Thematic Mapper have revealed the presence of 28 previously undescribed breached volcanic cones and 14 major volcanic debris avalanche deposits, of which only 3 had previously been identified. Several of the debris avalanche deposits cover areas in excess of 100 km2 and have volumes of the order of 10 km3. H/L ratios for the deposits have a median of 0.1 and a mean of 0.11, values similar to those determined for deposits described in other regions. Surface morphologies commonly include the hummocky topography of small hillocks and enclosed basins that is typical of avalanche deposits, but some examples exhibit smoother surfaces characterised by longitudinal grooves and ridges. These differences may result from the effects of flow confinement by topography or from variations in resistance to shearing in the materials involved. Breached composite cones and debris avalanche deposits tend to occur at right angles to regional tectonic elements, suggesting possible seismic involvement in triggering collapse and providing an additional consideration for assessment of areas at risk from collapse. The low denudation rate in the Central Andes, coupled with the predominance of viscous dacite lavas in volcanic edifices, produces unusually steep cones which may result in a higher incidence of volcano collapse than in other regions. A statistical survey of 578 composite volcanoes in the study area indicates that a majority of cones which achieve edifice heights between 2000–3000 m may undergo sector collapse.  相似文献   

2.
Debris avalanches associated with volcanic sector collapse are usually high-volume high-mobility phenomena. Debris avalanche deposit remobilisation by cohesive debris flows and landslides is common, so they can share textural characteristics such as hummocks and jigsaw cracks. Distinguishing original deposits from reworked products is critical for geological understanding and hazard assessment because of their different origin, frequency and environmental impact. We present a methodology based on field evidence to differentiate such epiclastic breccias. Basal contact mapping constrained by accurate altitude and location data allows the reconstruction of deposit stratigraphy and geometry. Lithological analysis helps to distinguish the different units. Incorporation structures, kinematic indicators and component mingling textures are used to characterise erosion and transport mechanisms. We apply this method to the enigmatic sequence at Perrier (French Massif Central), where four units (U1–U4) have been interpreted either as debris flow or debris avalanche deposits. The sequence results from activity on the Monts Dore Volcano about 2 Ma ago. The epiclastic units are matrix supported with an almost flat top. U2 and U3 have clear debris flow deposit affinities such as rounded clasts and intact blocks (no jigsaw cracks). U1 and U4 have jigsaw cracked blocks with matrix injection and stretched sediment blocks. U1 lacks large blocks (>10 m wide) and has a homogenous matrix with an upward increase of trapped air vesicle content and size. This unit is interpreted as a cohesive debris flow deposit spawned from a debris avalanche upstream. In contrast, U4 has large mega-blocks (up to 40 m wide), sharp contacts between mixed facies zones with different colours and numerous jigsaw fit blocks (open jigsaw cracks filled by monogenic intra-clast matrix). Mega-blocks are concentrated near the deposit base and are spatially associated with major substratum erosion. This deposit has a debris avalanche distal facies with local debris flow affinities due to partial water saturation. We also identify two landslide deposits (L1 and L2) resulting from recent reworking that has produced a similar facies to U1 and U4. These are distinguishable from the original deposits, as they contain blocks of mixed U1/U4 facies, a distinctly less consolidated and more porous matrix and a fresh hummocky topography. This work shows how to differentiate epiclastic deposits with similar characteristics, but different origins. In doing so, we improve understanding of present and past instability of the Monts Dore and identify present landslide hazards at Perrier.  相似文献   

3.
Previously undescribed debris-avalanche deposits occur in two locations downslope from the open end of the Valle del Bove. These outcrops comprise unstratified, ungraded deposits of metre-scale lava blocks in a matrix of weathered and fractured lava clasts. The avalanche deposits are unconformably overlain by matrix- to clast-supported conglomerates, representing debris-flow and interbedded fluvial deposits, that constitute most of the Milo Lahar sequence. We present evidence that the Milo Lahar sequence, which crops out just at the exit of the Valle del Bove, formed during the opening and enlargement of this depression. The presence of the avalanche deposits at the base of the Milo Lahar sequence indicates that catastrophic landslides were involved in the formation of the Valle del Bove. The composition of lavas in the debris avalanche deposits is similar to that of most of the Ellittico volcanic sequence exposed along the northern wall of the Valle del Bove. Radiocarbon dates of 8400 and 5300 years BP from the base and top, respectively, of the debris-flow sequence indicate that the Milo Lahars are correlative with the exposed part of the Chiancone deposit. The basal lahars of the Chiancone, which contain lava blocks whose compositions partially overlap that of blocks in the avalanche deposits, may have formed by water concentration in the distal end of the avalanche causing transformation to debris, or alternatively by reworking of the avalanche deposit.  相似文献   

4.
Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2–3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard.  相似文献   

5.
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized aa lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands.  相似文献   

6.
About 4,300 years ago, 10 km3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40–75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude.Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.  相似文献   

7.
Piton des Neiges (PN) Volcano on Reunion Island offers a rare opportunity to study deposits related to degradation processes in a deeply eroded oceanic shield volcano. Both the inner parts and flanks reveal a large amount of resedimented volcaniclastic material, including extensive debris avalanche deposits. PN litho–structural units, first studied by Upton and Wadsworth [1965, Philos. Trans. R. Soc. Lond., A 271, pp. 105–130], are re-examined. This review highlights the importance of long volcanic repose periods and erosion processes during PN history. volcaniclastic deposits have been studied in the field in order to evaluate the spatial and temporal distribution of the three main types of PN degradation processes. The deposits of these processes have been classified into: (1) talus, (2) mudflow and debris flow, and (3) debris avalanche. Lithology, frequency and estimated volumes of each deposit type imply that the structural evolution of PN can be considered in terms of the competition between the volcanic productivity and the degradation and erosion processes. The occurrence of huge catastrophic avalanches produced by flank failure is convincingly linked to the basaltic activity of PN, which implies a very low risk at present. On the contrary, mudflows and debris flows pose an important risk due to the high population density focussed around the basin outlets. Moreover, if smaller debris avalanches can occur in the cirques of PN, another major risk must be evaluated.  相似文献   

8.
Stoopes and Sheridan have mapped a volcanic debris avalanche of Nevado de Colima which has an exceptionally long runout (120 km) and low fall-height to length ratio (H/L = 0.04). We present paleomagnetic results from this volcanic debris avalanche deposit which provide evidence that this avalanche was emplaced at elevated temperatures. The majority of samples, collected from lithic clasts in the volcanic debris avalanche deposit, exhibit two-component remanent magnetizations with a low-temperature component (25–350°C) which is well grouped about the geomagnetic field direction at Colima and a high-temperature component (350–580°C) which is randomly oriented. Although the temperature of the deposit most likely varied with distance from the volcanic source and the thickness of the deposit, our results suggest an emplacement temperature of approximately 350°C at intermediate distances (18–26 km) from the source. In order for the rock clasts (20–40 cm diameter) to be heated to these temperatures, the avalanche was most likely the results of a magmatic, Bezymianny-type eruption. The mixing of hot, juvenile gases with the clasts provides an explanation for the high degree of fluidization of this material, as evidenced by the long runout of this avalanche deposit.  相似文献   

9.
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450 years ago produced a wave that affected areas 17 m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600 yr BP, and affected areas more than 7 m above high tide at distances of 80 km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600 yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600 yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska.  相似文献   

10.
Te Whaiau Formation is a massive volcaniclastic deposit interbedded within gravelly and sandy volcanogenic sediments of the northwestern Tongariro ring plain. The ca. 0.5-km3 deposit comprises a clay-rich, matrix-supported diamicton with lithological and physical properties that are typical of a cohesive debris-flow deposit. Clays identified in the matrix are derived from hydrothermally altered andesite lava and pyroclastic rocks. The distribution pattern of the deposit, and the nature of the clay matrix, point to a source area that was located in the vicinity of Mt. Tongariro's current summit (1967 m). Most of the proximal zone is buried under late Pleistocene lavas forming the northwestern flank of the massif. In contrast, the medial and distal zones are well exposed to the northwest in the Whanganui River catchment. Lithofacies exposed in these latter zones contain isolated volcaniclastic megaclasts and well-preserved, jointed blocks of andesite. Small hummocks, up to 5 m high, are present only in the distal margins of the deposit. Based on these observations, possible source areas and analogy with similar deposits elsewhere, we infer that Te Whaiau Formation was initiated as a fluid-saturated debris avalanche that transformed downstream into a single, cohesive debris flow. It is interpreted that the mass flow was initially confined to the northwestern flank of Tongariro before spreading laterally onto the lowlands to the northwest. The resulting heterolithological diamicton filled stream channels in the western sector of the Tongariro ring plain. At 15 km from source, the debris flow encountered an elevated terrain, which acted as a barrier to further spreading to the north. The stratigraphy of the cover beds and K/Ar data on an underlying lava indicate that Te Whaiau Formation was emplaced between 55 and 60 ka, a cool period characterized by intense volcaniclastic sedimentation around the Tongariro massif. Jigsaw-fit fractured volcanic bombs suggest that an explosive eruption through hydrothermally altered rock and pyroclastic deposits probably triggered the mass flow. The characteristics of the deposit indicate that a large portion of the proto-Tongariro edifice collapsed en masse to form the initial avalanche. Hence, we infer that the current morphology of Tongariro volcano is derived not only from glacial erosion, but also from gravitational failure. Prehistoric eruptions and current geothermal activity on the upper northern and western slopes of the Tongariro massif suggest that avalanche-induced debris flows must be considered a potential future volcanic hazard for the region.  相似文献   

11.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes.  相似文献   

12.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

13.
Narcondam Island in the Andaman Sea represents a dacite–andesite dome volcano in the volcanic chain of the Burma–Java subduction complex. The pyroclasts of andesitic composition are restricted to the periphery of the dome predominantly in the form of block‐and‐ash deposits and minor base surge deposits. Besides pyroclastic deposits, andesitic lava occurs dominantly at the basal part of the dome whereas dacitic lava occupies the central part of the dome. The pyroclasts are represented by non‐vesiculated to poorly vesiculated blocks of andesite, lapilli, and ash. The hot debris derived from dome collapse was deposited initially as massive to reversely‐graded beds with the grain support at the lower part and matrix support at the upper part. This sequence is overlain by repetitive beds of lapilli breccia to tuff breccia. These deposits are recognized as a basal avalanche rather than lahar deposit. This basal avalanche was punctuated by an ash‐cloud surge deposit representing a sequence of thinly bedded units of normal graded unit to parallel laminated beds.  相似文献   

14.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   

15.
16.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

17.
Stratified scree is forming today on 34–45° north‐facing slopes in gullies in the Kluane Lake area of the St. Elias Range of the Yukon Territory. Low winter snowfall leaves the slopes snow‐free in the dry spring weather, so that dry grain flows are extremely active. The coarsest material moves to the bottom of the slope, while the finer material is left behind. Summer rains mobilize the matrix‐rich material upslope and cause it to flow down and cover the clast‐supported deposits from the dry grain flows. The matrix‐supported debris flow material dries and hardens, stabilizing the clast‐supported material. This occurs in a region of discontinuous permafrost, but permafrost is not involved in the processes. A remarkably similar Pleistocene deposit occurs at Noiseux in Belgium. Detailed examination of the deposits from the Yukon and Noiseux shows that they have essentially similar characteristics, suggesting that the main deposit at Noiseux formed in the same way from frost‐shattered Famenne siltstone with small quantities of loess. The deposit remaining today represents the sediments at the toe of this scree. Thus climatic conditions at Noiseux during part of the Late Pleistocene were similar to those found today at Kluane Lake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   

20.
We propose a mechanical explanation for the low basal shear resistance (about 50 kPa) previously used to simulate successfully the complex, well-documented deposit morphology and lithological distribution produced by emplacement of the 25 km3 Socompa volcanic debris avalanche deposit, Chile. Stratigraphic evidence for intense basal comminution indicates the occurrence of dynamic rock fragmentation in the basal region of this large granular mass flow, and we show that such fragmentation generates a basal shear stress, retarding motion of the avalanche, that is a function of the flow thickness and intact rock strength. The topography of the Socompa deposit is realistically simulated using this fragmentation-derived resistance function. Basal fragmentation is also compatible with the evidence from the deposit that reflection of the avalanche from topography caused a secondary wave that interacted with the primary flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号