首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Equilibria between Chelex 100* and manganese, zinc and cadmium ions were used to determine the complexation of these trace metals in 36‰ Gulf Stream seawater at 25°C and pH 8.2. The method utilized radiotracers (54Mn, 65Zn, and 109Cd) to quantify trace metal adsorption from trace metal-amended seawater and from seawater containing a series of ethylenediaminetetracetate (EDTA)—metal ion buffers. Results were consistent with Chelex adsorption of both trace metal ions and trace metal—EDTA chelates. Equilibrium models fitted to the data were used to establish conditional stability constants for Chelex adsorption of manganese, zinc and cadmium ions and for adsorption of EDTA-chelates. These models also yielded ratios of free metal ions to total dissolved trace metal concentrations in seawater: 10−0.1 for manganese, 10−0.2 for zinc, and 10−1.5 for cadmium. Independent measurements with a cadmium ion-selective electrode also yielded a free: total cadmium ratio of 10−1.5.  相似文献   

2.
A worldwide literature survey of data on cadmium concentration in the soft tissue of the mussel, Mytilus spp., from 591 stations is presented. These stations are from 13 regions. Geometric means for the regions vary from 0·6 to 3·3 μg g−1 (dry weight) for the Barents Sea and the Northeastern Pacific coast, respectively.The averages of seven of these regions, for which reliable cadmium concentrations in seawater were available, were used to calculate a relationship between cadmium concentrations in seawater and mussel soft tissue. The relationship was highly significant: (Cd) mussel (μg g−1, dry weight) = 0·074 (Cd) water (ng litre−1) + 0·39 (P ≤ 0·0005).This model has been successfully applied in the context of the contamination of the Gironde estuary (France). It can also be used to define a water quality criterion for mussel maturing parks consistent with the quality criterion defined for shellfish for human consumption.  相似文献   

3.
Results of trace metal analyses performed on two species of Euphausiacea, Meganyctiphanes norvegica and Stylocheiron longicorne, and one species of Decapoda, Sergestes arcticus, collected off the east coast of Corsica, are reported. Analyses were carried out by atomic absorption spectrophotometry and by differential pulse anodic stripping voltammetry.S. arcticus contained lower concentrations of phosphorus (which was also analysed as a biological indicator), cadmium (0.33 μg g−1), copper (17.7 μg g−1), lead (2.13 μg g−1) and zinc (51 μg g−1) than the two Euphausiacea (0.50 μg Cd g−1, 25.4 μg Cu g−1, 4.03 μg Pb g−1 and 59 μg Zn g−1). Moreover, manganese concentrations were low in all the samples.When the results presented here are compared with previous results on phytoplankton and mesozooplankton, there appears to be no trend of trace metal enrichment from phytoplankton to the Decapoda.  相似文献   

4.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

5.
The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m− 2 d− 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after  30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L− 1. During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom–flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m− 2 d− 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June–August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7–5.0 μm ‘flagellate’ fraction of the phytoplankton community with grazing rates up to 178% of ‘flagellate’ growth rate. The Thames plume region was therefore shown to be an active region of nutrient and phytoplankton processing and transport to the southern North Sea. The use of a combination of moorings and ship-based sampling was essential in understanding the factors influencing nutrient transport, phytoplankton biomass and species composition in this shelf sea plume region.  相似文献   

6.
Seasonal and diurnal reduced sulfur gas emissions were measured along a salinity gradient in Louisiana Gulf Coast salt, brackish and freshwater marshes. Reduced sulfur gas emission was strongly associated with habitat and salinity gradient. The dominant emission component was dimethyl sulfide (average: 57·3 μg S m−2 h−1) in saltmarsh with considerable seasonal (max: 144·03 μg S m−2 h−1; min: 1·47 μg S m−2 h−1) and diurnal (max: 83·58 μg S m−2 h−1; min: 69·59 μg S m−2 h−1) changes in flux rates. Hydrogen sulfide was dominant (average: 21·2 μg S m−2 h−1, max: 79·2 μg S m−2 h−1; min: 5·29 μg S m−2 h−1) form in brackishmarsh and carbonyl sulfide (average: 1·09 μg S m−2 h−1; max: 3·42 μg S m−2 h−1; min: 0·32 μg S m−2 h−1) was dominant form in freshwater marsh. A greater amount of H2S was evolved from brackishmarsh (21·22 μg S m−2 h−1) as compared to the saltmarsh (2·46 μg S m−2 h−1) and freshwater marsh (0·30 μg S m−2 h−1). Emission of total reduced sulfur gases decreased with decrease in salinity and distance inland from the coast. Emission of total reduced sulfur gases over the study averaged 73·3 μg S m−2 h−1 for the saltmarsh, 32·1 μg S m−2 h−1 for brackishmarsh and 2·76 μg S m−2 h−1 for the freshwater marsh.  相似文献   

7.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

8.
Iodate (IO3) is the predominant dissolved species of iodine in the oxygenated waters of the Mediterranean Sea. Iodide (I) is present in significant quantities (up to 65 nM) in oxygenated waters in the photic zone and near the interface above the anoxic and saline Bannock Basin. Lesser quantities of I (< 10 nM) are found throughout the rest of the oxic water column. An additional unidentified dissolved iodine species is present immediately above the anoxic interface.Total dissolved iodine (ΣI) increases dramatically across the seawater/brine interface. Part of this increase is undoubtedly the result of the dissolution of iodine-rich evaporites during formation of the brine bodies at the Tyro and Bannock Basins. The vertical distribution of ΣI and other dissolved chemical species (particularly PO43−) in the Bannock Basin brine, however, suggests an additional, present-day, diagenetic source of dissolved iodine to the brine. Based on the increase in the concentration of the most soluble major ions across the seawater/brine interface, 5–7 μM of the 11.5-μM increase in ΣI concentration must be attributed to diagenesis.  相似文献   

9.
The consequences of two upwelling events in mid- (MW) and late (LW) winter on biogeochemical and phytoplankton patterns were studied in the Pontevedra Ria and compared with the patterns measured under typical winter conditions and under a summer upwelling event. Thermohaline patterns measured during the mid-winter upwelling event (MW-up) revealed the intrusion of saltier seawater (35.9) into the ria associated with the Iberian Poleward Current (IPC). During the late-winter upwelling event (LW-up), the seawater which had welled up into the ria showed characteristics of the Eastern North Atlantic Central Water mass (ENACW). In both cases the measured water residence time (4 days during MW-up and 10 days during LW-up) was related to both meteorological and fluvial forcing. This residence time contrasts with that of summer upwelling (7 days) and with that estimated under unfavorable upwelling atmospheric conditions (2–4 weeks). During MW-up, the ria became poor in nutrients due to continental freshwater dilution, associated with the shorter residence time of the water, and the intrusion of IPC, which is a water body poor in nutrient salts: 2.9 μM of nitrate, 0.1 μM of phosphate and 1.5 μM of silicate. During this event, the ria exported 3.4 molDIN s−1, compared with 6.9 molDIN s−1 in non-upwelling conditions. Phytoplankton showed a uniform distribution throughout the ria, as during unfavorable upwelling conditions, and was characterized by the dominance of diatoms, mainly Nitzschia longissima and Skeletonema costatum. During LW-up, a nutrient depletion in the photic layer also occurred, but as a result of a phytoplankton spring bloom developing at this time. The ria was a nutrient trap where 4.1 molDIN s−1 were processed by photosynthesis. This budget is three times higher than the one under non-upwelling conditions. In contrast with the MW-up, which had no effect on primary production, during LW-up the ria became more productive, although not as productive as during a summer upwelling event (9.9 molDIN s−1). The taxonomic composition of the phytoplankton community did not change noticeably during LW-up and the summer upwelling, with the same species present and changing only in relative proportions. Diatoms were always the dominant microphytoplankton community, with Pseudonitzschia pungens, Thalassionema nitzschioides and several species of Chaetoceros as characteristic taxons.  相似文献   

10.
The stable isotopes of dissolved organic carbon (DOC) are a powerful tool for distinguishing sources and inputs of organic matter in aquatic systems. While several methods exist to perform these analyses, no labs routinely utilize a high temperature combustion (HTC) instrument. Advantages of HTC instruments include rapid analysis, small sample volumes and minimal sample preparation, making them the favored devices for most routine oceanic DOC concentration measurements. We developed a stable carbon DOC method based around an HTC system. This method has the benefit of a simple setup, requiring neither vacuum nor high pressures. The main drawback of the method is a significant blank, requiring careful accounting of all blank sources for accurate isotopic and concentration values. We present here a series of experiments to determine the magnitude, source and isotopic composition of the HTC blank. Over time, the blank is very stable at  20 ng of carbon with a δ13C of − 18.1‰ vs. VPDB. The similarity of the isotopic composition of the blank and seawater samples makes corrections relatively minor. The precision of the method was determined by oxidizing organic standards with a wide isotopic and concentration range (− 9‰ to − 39‰; 18 μM to 124 μM). Analysis of seawater samples demonstrates the accuracy for low concentration, high salinity samples. The overall error on the measurement is approximately ± 0.8‰.  相似文献   

11.
W. Koeve   《Marine Chemistry》2001,74(4):96
Observations of wintertime nutrient concentrations in surface waters are scarce in the temperate and subarctic North Atlantic Ocean. Three new methods of their estimation from spring or early summer observations are described and evaluated. The methods make use of a priori knowledge of the vertical distribution of oxygen saturation and empirical relationships between nutrient concentrations and oxygen saturation. A south–north increase in surface water winter nutrient concentration is observed. Winter nitrate concentrations range from very low levels of about 0.5 μmol dm−3 at 33°N to about 13.5 μmol dm−3 at 60°N. Previous estimates of winter nitrate concentrations have been overestimates by up to 50%. At the Biotrans Site (47°N, 20°W), a typical station in the temperate Northeast Atlantic, a mean winter nitrate concentration of 8 μmol dm−3 is estimated, compared to recently published values between 11 and 12.5 μmol dm−3. It is shown that most of the difference is due to a contribution of remineralised nitrate that had not been recognized in previous winter nutrient estimates. Mesoscale variation of wintertime nitrate concentrations at Biotrans are moderate (less than ±15% of the regional mean value of about 8 μmol dm−3). Interannual variation of the regional mean is small, too. In the available dataset, there was only 1 year with a significantly lower regional mean winter nitrate concentration (7 μmol dm−3), presumably due to restricted deep mixing during an atypically warm winter. The significance of winter nitrate estimates for the assessment of spring-bloom new production and the interpretation of bloom dynamics is evaluated. Applying estimates of wintertime nitrate concentrations of this study, it is found that pre-bloom new production (0.275 mol N m−2) at Biotrans almost equals spring-bloom new production (0.3 mol N m−2). Using previous estimates of wintertime nitrate yields unrealistically high estimates of pre-bloom new production (1.21–1.79 mol N m−2) which are inconsistent with observed levels of primary production and the seasonal development of biomass.  相似文献   

12.
A spectrophotometric method is described for the determination of dissolved mono- and polysaccharides in seawater. It is based upon the well known alkaline ferricyanide reaction, but uses the reagent 2,4,6-tripyridyl-s-triazine (TPTZ) to give a strongly colored complex with the reduced iron. The method has been tested on model carbohydrates and other compounds, and also on natural samples of coastal and oceanic waters. Total carbohydrate content of the natural samples ranged from 5.2 to 25.1 μmol glucose-Cl−1. The coefficient of variation was typically below 6% for values near 17 μmol Cl−1 and approximately 10% for values near 3.5 μmol Cl−1.  相似文献   

13.
Dissolved oxygen in seawater has been determined by using the Winkler's reaction scheme for decades. An interference in this reaction scheme that has been heretofore overlooked is the presence of naturally occurring iodate in seawater. Each mole of iodate can result in an apparent presence of 1.5 mol of dissolved oxygen. At the concentrations of iodate in the surface and deep open ocean, it can lead to an overestimation of 0.52 ± 0.15 and 0.63 ± 0.05 μmol kg− 1 of oxygen in these waters respectively. In coastal and inshore waters, the effect is less predictable as the concentration of iodate is more variable. The solubility of oxygen in seawater was likely overestimated in data sources that were based on the Winkler's reaction scheme for the determination of oxygen. The solubility equation of García and Gordon [Garcia H.E., Gordon, L.I., 1992. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37, 1307–1312] derived from the results of Benson and Krause [Benson, F.B., Krause, D. Jr., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29, 620–632] is free from this source of error and is recommended for general use. By neglecting the presence of iodate, the average global super-saturation of oxygen in the surface oceans and the corresponding efflux of oxygen to the atmosphere both have been overestimated by about 8%. Regionally, in areas where the degree of super-saturation or under-saturation of oxygen in the surface water is small, such as in the tropical oceans, the net air–sea exchange flux can be grossly under- or overestimated. Even the estimated direction of the exchange can be reversed. Furthermore, the presence of iodate can lead to an overestimation of the saturation anomaly of oxygen in the upper ocean attributed to biological production by 0.23 ± 0.07%. AOU may have been underestimated by 0.52 ± 0.15 and 0.63 ± 0.05 μmol kg− 1 in the surface mixed layer and deep water, while preformed phosphate and preformed nitrate may have been overestimated by 0.004 ± 0.001 and 0.06 ± 0.02 μmol kg− 1 in the surface mixed layer, and 0.005 ± 0.0004 and 0.073 ± 0.006 μmol kg− 1 in the deep water. These are small but not negligible corrections, especially in areas where the values of these parameters are small. At the increasing level of sophistication in the interpretation of oxygen data, this source of error should now be taken into account. Nevertheless, in order to avoid confusion, an internationally accepted standard needs to be adopted before these corrections can be applied.  相似文献   

14.
Neanthes arenaceodentata were exposed to 292, 146, 92 and 56 μg litre−1 Cu (measured) and control seawater after a 27-day pre-exposure to a sublethal concentration of Cu (10, 16 and 28 μg litre−1 and control) to determine if the worms increased their tolerance to Cu after the pre-treatment. The worms pre-exposed to 28 μg litre−1 Cu were significantly more resistant to Cu toxicity than control and 10 and 16 μg litre−1 Cu pre-exposed worms. For example, the time to 50 % mortality at 92 μg litre−1 Cu was 18 and 11 days for worms pre-exposed to 28 μg litre−1 Cu and control conditions, respectively. The net rate of Cu uptake during the toxicity test was lower for worms pre-exposed to 28 μg litre−1 Cu than for the control and 10 and 16 μg litre−1 Cu pre-exposed worms. For example, the net rate of Cu uptake at 292 μg litre−1 Cu by worms pre-exposed to 28 μg litre−1 Cu and control conditions was 42 and 102 μg g−1 day −1, respectively.  相似文献   

15.
We have investigated the chemical forms, reactivities and transformation kinetics of Fe(III) species present in coastal water with ion exchange and filtration methods. To simulate coastal water system, a mixture of ferric iron and fulvic acid was added to filtered seawater and incubated for a minute to a week. At each incubation time, the seawater sample was acidified with hydrochloric acid and then applied to anion exchange resin (AER) to separate negatively charged species (such as fulvic acid, its complexes with iron and iron oxyhydroxide coated with fulvic acid) from positively charged inorganic ferric iron (Fe(III)′). By monitoring the acid-induced Fe(III)′ over an hour, it was found that iron complexed by fulvic acid dissociated rapidly to a large extent (86–92% at pH 2), whereas amorphous ferric oxyhydroxide particles associated with fulvic acid (AFO-L) dissociated very slowly with the first-order dissociation rate constants ranging from 6.1 × 10− 5 for pH 3 to 2.7 × 10− 4 s− 1 for pH 2. Therefore, a brief acidification followed by the AER treatment (acidification/AER method) was likely to be able to determine fulvic acid complexes and thus differentiate the complexes from the AFO-L particles (the dissolution of AFO-L was insignificant during the brief acidification). The acidification/AER method coupled with a simple filtration technique suggested that the iron–fulvic acid complexes exist in both the < 0.02 μm and 0.02–0.45 μm size fractions in our coastal water system. The truly dissolved iron (< 0.02 μm) was relatively long-lived with a life-time of 14 days, probably due to the complexation by strong ligands. Such an acid-labile iron may be an important source of bioavailable iron in coastal environments, as a significant relationship between the chemical lability and bioavailability of iron has been well recognised.  相似文献   

16.
The first oceanographic research (hydrography, nutrient salts, chlorophyll, primary production and phytoplankton assemblages) in a Middle Galician Ria was carried out in Corme-Laxe during 2001, just a year before the Prestige oil spill, being the only reference to evaluate eventual changes in the phytoplankton community. Due to the small size of this ria (6.5 km2), oceanographic processes were driven by the continental water supplied by Anllons River during the wet season (20–30 m3 s−1 in winter), and the strong oceanic influence from the nearby shelf during the dry season. The annual cycle showed a spring bloom with high levels of chlorophyll (up to 14 μg Chl-a L−1) and primary production (3 g C m−2 d−1) and a summer upwelling bloom (up to 8 μg Chl-a L−1 and 10 g C m−2 d−1) where the proximity of the Galician upwelling core (<13.5 °C at sea surface) favors the input of upwelled seawater (up to 9 μM of nitrate and silicate) to the bottom ria layer, even during summer stratification events (primary production around 2 g C m−2 d−1). Thus, phytoplankton assemblages form a “continuum” from spring to autumn with a predominance of diatoms and overlapping species between consecutive periods; only in autumn dinoflagellates and flagellates characterized the phytoplankton community. In the Middle Rias as Corme-Laxe, the nutrient values, Chl-a, primary production and phytoplankton abundance for productive periods were higher than those reported for the Northern (Ria of A Coruña) and Southern Rias (Ria of Arousa) for year 2001; this suggests the importance of the hydrographic events occurring in the zone of maximum upwelling intensity of the Western Iberian Shelf, where a lack of annual cycles studies exists.  相似文献   

17.
The spatial and temporal distribution of cadmium (Cd) and phosphate in the Southern Ocean are related to biology and hydrography. During a period of 18 days between transects 5/6 and 11, a phytoplankton spring bloom developed in the Polar Frontal region. Upper water Cd concentrations were not depleted and ranged from 0.2 to 0.8 nM at about 10 m depth. These relatively high Cd concentrations are attributed to upwelling of Upper Circumpolar Deep Water (0.5–1.2 nM in the core) in combination with low biological productivity (0.2 to 0.3 mg m−3 chlorophyll-a, 0.3 g C m−2 d−1). Total particulate Cd concentrations at 40 m depth were between 0.02 and 0.14 nM with the maximum in concentration in the Polar Frontal region. Most of the particulate Cd at this depth (85–94%) was detected in the first phase of a sequential chemical leaching treatment which includes adsorbed Cd as well as Cd incorporated in algae. The Polar Frontal region was characterized by minima in Cd concentration and Cd/phosphate ratio of seawater at both transects; values were the lowest at transect 11 after development of the spring bloom which was dominated by diatoms. This decreasing Cd/phosphate ratio in seawater during spring bloom development was attributed to preferential Cd gross uptake which more than compensated the process of preferential Cd recycling. Within the Upper Circumpolar Deep Water, Cd showed a maximum in concentration similar to that of the major nutrients. Both the Cd concentration and the Cd/phosphate ratio of the deeper water increased in southern direction, from 0.4 to 0.7 nM and from 0.2 to 0.3 nM/μM, respectively. Antarctic Intermediate Water has a Cd concentration of 0.21 nM with a Cd/phosphate ratio of 0.10 nM/μM. In Antarctic Bottom Water, Cd concentrations ranged from 0.60 to 0.82 nM.  相似文献   

18.
Short-term iron enrichment experiments were carried out with samples collected in areas with different phytoplankton activity in the northern North Sea and northeast Atlantic Ocean in the summer of 1993. The research area was dominated by high numbers of pico-phytoplankton, up to 70,000 ml−1. Maximum chlorophyll a concentrations varied from about 1.0 μg l−1 in a high-reflectance zone (caused by loose coccoliths, remnants from a bloom of Emiliania huxleyi) and about 3.5 μg l−1 in a zone in which the phytoplankton were growing, to about 0.5 μg l−1 in the northeast Atlantic Ocean. From the high-reflectance zone to the northeast Atlantic Ocean, nitrate concentrations increased from 0.5 μM to 6.0 μM. Concentrations of reactive iron in surface water showed an opposite trend and decreased from about 2.6 nM in the high-reflectance zone to <1.0 nM in the northeast Atlantic Ocean. In the research area, no signs of true iron deficiency were found, but iron enrichments in the high-reflectance zone, numerically dominated by Synechococcus sp., resulted in increased nitrate uptake. Ammonium uptake was hardly affected. Strong support for the effect of Fe on cell physiology is given by the increase in the f-ratio. Net growth rates of the phytoplankton (changes in cell numbers over 24 h) were almost unchanged. Phytoplankton collected from the northeast Atlantic Ocean, did not show changes in the nitrogen metabolism upon addition of iron. Net growth rates in these incubations were low or negative, with only slightly higher values with additional iron.  相似文献   

19.
In the oyster Ostrea chilensis the adult female broods the young for almost the entire developmental period, releasing a large pediveliger larva (450 μm shell length) with an extremely short pelagic phase. In this study of the larval physiology, the dry weight of the embryo or larva remained constant during the early developmental stages (as far as, and including, the trochophore), but the veliger grew steadily to reach 8 μg at 450 μm shell length, the stage at which it was ready for release. During this growth period the veliger consumed metabolic reserves (62% protein and 38% lipid). Carbohydrate levels were negligible. Chilean oyster veligers larger than 275 μm shell length were able to remove particles from suspension, but clearance rate (2 μl h 1 larva 1 at 450 μm shell length) was much lower than published values for planktotrophic veligers. Low clearance rate in the veliger of O. chilensis is probably attributable to the absence of the postoral ciliary band. Oxygen uptake increased from 19 – 22 nl O2 h 1 ind 1 for pre-veliger stages to 32 nl O2 h 1 ind 1 for a veliger 450 μm long, which is consistent with published values for veligers in general when corrected for body weight. Excretion rate was low, increasing from 0.04 ng NH4-N h 1 larva 1 in the trochophore to 0.13 ng NH4-N h 1 larva 1 in a pediveliger of shell length 450 μm. Biochemical energy reserves were insufficient to meet the metabolic demands of the developing larva, suggesting that uptake of particles and/or dissolved organic matter from the mantle cavity of the female is necessary for successful development.  相似文献   

20.
Samples of lake water and coastal seawater from Nova Scotia, Canada, were irradiated with natural or artificial sunlight to investigate the potential for photochemical hydrogen production. Hydrogen photo-production was observed in all natural water samples. Rates of hydrogen formation were highest in coloured lake water (range: 98–163 pmol L− 1h− 1) and lower in seawater (range: 19–45 pmol L− 1 h − 1). Dilutions of the most highly coloured lake sample (Kejimkujik Lake) showed a positive linear relationship between H2 production rates and CDOM concentration. Photo-production rates normalised to UV absorption coefficients at 350 nm indicated that the photochemical efficiency of hydrogen formation varied between samples, perhaps due to differences in the CDOM composition. Photochemical hydrogen formation was also seen in solutions of syringic acid and acetaldehyde: two low-molecular-weight carbonyl compounds found in natural waters. Photochemistry may therefore offer least a partial explanation for the persistently high levels of hydrogen observed in the low-latitude surface ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号