首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用1985—2013年内蒙古自治区119站逐日雷暴、冰雹、大风观测资料,运用数理统计和相关分析等方法,对内蒙古地区雷暴、冰雹、雷暴大风的时空分布特征和变化规律进行了分析。结果表明:内蒙古这三种强对流天气的分布形态在西部地区为沿阴山山脉的准东西走向,东部地区为沿大兴安岭山脉的准南北走向,发生强对流天气现象的大值区主要集中在鄂尔多斯市、包头市、呼和浩特市、乌兰察布市、锡林郭勒盟、赤峰市;多雷暴中心年平均雷暴日累计达30 d以上,多冰雹中心年平均冰雹日累计到达1.4 d以上,多雷暴大风中心年平均雷暴大风日达3.5 d以上;雷暴、冰雹和雷暴大风天气在夏季出现次数最多;内蒙古雷暴、冰雹、雷暴大风总站次随时间的变化整体均呈现减少的趋势,其活动月份均呈现单峰的分布形势,内蒙古雷暴、冰雹和雷暴大风的活动期主要集中在5—9月,发生雷暴最多的是7月,单站雷暴日约为8 d,发生冰雹最多的是6月,单站冰雹日约为0.3 d,雷暴大风最多的是6月,单站雷暴大风日约为0.89 d。  相似文献   

2.
利用1970—2019年庆阳市8个国家观测站的常规观测资料、联防记录、SRTMDEMUTM 90 m分辨率数字高程和归一化植被指数(NDVI)数据,对雷暴、冰雹和雷暴大风3种强对流天气的气候特征进行对比分析。结果表明:庆阳市不同类型强对流天气的空间分布差异明显,雷暴东南部多,中、西部少。冰雹西北、东南部多中部少;雷暴大风则是中部多,东、西部少。不同强对流天气受下垫面的影响不同,冰雹的空间分布主要与海拔高度有关,两者呈显著的正相关关系,而雷暴大风则与NDVI呈显著的反相关关系。近50年3类强对流天气的范围和日数的年际变化整体呈减少趋势,尤其是21世纪以来减少趋势显著,并先后发生了显著的减少突变。雷暴大风的突变较早,发生在20世纪80年代中期,而雷暴和冰雹的突变较迟,发生于90年代中期前后;月变化基本呈“单峰型”特征,其中雷暴大风的平均日数出现最早为5月,但其平均站数峰值出现在7月;冰雹平均日数和站次的峰值均出现在6月,雷暴大风的峰值出现在7月;日变化呈“午后”型特征,14—19时最频发;白天时段的对流频率是夜间的2倍以上,夜间的对流主要集中在20—22时。  相似文献   

3.
利用气象信息综合分析处理系统、江西WebGIS雷达拼图、江西自动气象站、上饶SA雷达等资料,综合分析了2004—2020年玉山县15次雷暴大风过程特征。结果表明:玉山雷暴大风集中出现在5—9月,其中7月最多;雷暴大风有明显日变化特征,午后增温是高发期,导致玉山雷暴大风天气主要有三类中尺度系统,分别为冷锋倒槽类、副高控制类、热带系统类;按雷达拼图回波特征分为飑线回波带上超级单体、飑线(弓状)回波带上强单体、副高边缘强回波短带和局地热雷雨强回波三类。飑线回波带上超级单体中心回波强度超过60 dBZ,回波带有明显的“弓”状结构,移动速度可达80~100 km·h^(-1);副高边缘的雷暴大风天气发生在局地热雷雨强回波发展合并时,局地性强,移动缓慢,移速仅30 km·h^(-1)左右。雷达PUP产品上超级单体冰雹和雷暴大风主要区别为:组合反射率CR产品60 dBZ强回波面积冰雹较大,雷暴大风较小;垂直累积液态水(Vertically Integrated Liquid,VIL)冰雹可达到60 kg·m^(-2),雷暴大风VIL≤35 kg·m^(-2);反射率因子垂直剖面(Reflectivity Cross Section,RCS)冰雹有超过65 dBZ强回波核,雷暴大风则没有;径向速度垂直剖面(Velocity Cross Section,VCS)冰雹出现中气旋结构,雷暴大风则出现“逆风区”或弱切变结构。  相似文献   

4.
利用呼伦贝尔市CIMISS系统实况资料,统计分析了2010—2021年5—9月东北冷涡背景下的强对流天气时空分布及物理量参数特征。结果表明:(1)5月雷暴大风次数最多,6月冰雹次数最多,6—8月是短时强降水集中发生期,尤以8月次数最多。(2)强对流天气主要出现在12:00—20:00,其中短时强降水每个时次均有发生,但雷暴大风与冰雹天气在21:00—次日08:00基本没有发生过。(3)大兴安岭西部雷暴大风站次较多;大兴安岭东北部、岭上及岭西北的冰雹站次较多;短时强降水与强对流天气空间分布特征较为一致,均是大兴安岭岭上南段与岭东的站次较多。(4)雷暴大风天气的风速多以17.2~20.7 m·s-1为主;短时强降水量级为20.0~29.9 mm的站次占总站次的74.3%;持续时间小于5 min冰雹居多,直径小于5 mm冰雹的站次占总站次的49.1%。(5)短时强降水850 hPa的比湿、水汽通量、水汽通量散度的物理量参数均值均大于冰雹、雷暴大风;短时强降水K指数均值大于冰雹、雷暴大风,T850-T500均值大于26℃,短时强...  相似文献   

5.
基于1999—2013年大连地区的雷暴大风、雷暴和冰雹等观测资料,对大连地区雷暴大风天气的气候和天气学特征进行了分析。结果表明:1999—2013年大连地区雷暴大风天气具有较强的地域特点,夜间雷暴大风天气的发生频率明显高于白天,海岛站雷暴大风出现次数明显多于陆地站;雷暴大风天气主要集中出现在夏季,10月雷暴大风发生也较多。统计表明,大连地区雷暴大风天气通常发生在空间尺度和时间尺度均相对较大的雷暴群中,单体雷暴出现雷暴大风的概率极低,且大都伴有降水,但雷暴大风与暴雨或冰雹相伴出现的概率较低。大连地区的雷暴大风天气是由多种有利的高低空系统配置及高低空急流和中高空干空气的共同作用产生的,其中高空急流和中高空干空气是制约雷暴大风产生的重要因素,高空急流有时制约雷暴大风的产生方位和分布形态,大连地区雷暴大风通常位于高空急流轴下方及其附近区域;中高空干空气具有3个作用:一是增强大气不稳定度;二是在干湿区的交界处形成较强的露点锋,有时具有雷暴的触发作用;三是与其他天气系统叠加时具有增强上升运动的作用。  相似文献   

6.
中小尺度强对流天气具有极强的破坏力,了解其气候学特征对于预测、预报和影响评价都具有实际意义。利用1961~2015年的2332个高密度逐月国家级气象站观测资料,分析了中国大陆3种常见中小尺度强对流天气(雷暴、闪电、冰雹)在年、季、月尺度上发生日数的时间变化规律和空间分布特征。结果表明:全国年平均雷暴、闪电和冰雹发生频率分别为39.23 d/a、20.56 d/a和1.07 d/a;雷暴和闪电主要发生在夏季3个月,雷暴日数7月最多,闪电日数8月最多;冰雹主要发生每年5~9月,6月发生频率最高;雷暴和闪电的高发区分布基本一致,主要集中在华南和西南,青藏高原也是雷暴的高发区域之一;冰雹的高发区主要集中在青藏高原、内蒙古高原东部以及中西部山地,而东南沿海地区发生频率则较低。进一步分析发现,我国雷暴和冰雹出现频率随海拔高度增加而明显增加,冰雹和海拔高度有更好的对应关系,二者增加速率分别为2.87 d/500 m和1.80 d/500 m,表明地势高度对这两种强对流天气形成和发展具有重要影响。  相似文献   

7.
基于1956—2019年参证气象站记录的雷暴、闪电、暴雨、高温、低温、雾和霾等气候资料,利用常规气候统计及Morlet小波方法对影响昌北机场安全运营的高影响天气事件演变及周期变化规律进行统计分析。结果表明:1)雷暴多出现于春夏季,年均雷暴日数为49.8 d,呈波动下降趋势。2)春夏季闪电高发,且夏季机场附近存在较明显的闪电集中区域,闪电高频时段为13—20时,最高峰为15时。3)年均暴雨、大暴雨日数分别为5.0 d和0.8 d,呈缓慢增长趋势,暴雨集中在4—8月,大暴雨集中在4、6月,二者均在6月份最多。4)夏季高温日数呈缓慢增加趋势,7月份最多,8月份次之;冬季低温日数呈明显下降趋势,1月份最多,12月份次之。5)年均霾日数大于雾日数,霾多发于秋冬季,雾集中在冬春季,均于12月最常发生。6)冰雹、积雪、结冰、冻雨、沙尘、龙卷风等破坏性天气发生频次较小,但不应忽视此类天气的防范工作。7)暴雨、低温及高温日数均存在准2 a的周期变化。  相似文献   

8.
对北京地区1994~2005年暖季(5~9月)雷暴、冰雹、暴雨和大风等各种对流天气进行了气候统计和分析。统计结果表明:北京地区暖季发生对流的概率很高,按日数统计的气候概率达47.77%,有雷暴相伴的强对流天气大风、暴雨和冰雹气候概率分别为27.29%、10.84%和6.29%。另外,北京地区对流天气一般可连续出现3 d,强对流天气也可连续出现2 d。北京地区对流季节长达4个月,其中6、7、8月为主要的对流月,这三个月中雷暴发生的气候概率均超过50%。暴雨多发季节为7月中旬到8月上旬。冰雹集中于6月中、下旬。在对流天气的地理分布上,北京西北部、东北部山区及西南部山区多对流天气,中心区和东南部平原地区对流天气较少。暴雨呈西南-东北方向带状分布,东北部山区、中部和东南部平原地区多发生暴雨,而西北部和西南部山区很少发生暴雨。山区冰雹明显多于平原。西北部和东北部山区大风偏多,西南部霞云岭大风最少。暴雨有明显的夜发性,即夜间次数多,降水量更大。冰雹集中发生在午后到傍晚,占冰雹总站次的76.72%。夜间发生冰雹的概率非常小,上午到中午也不多。  相似文献   

9.
东营市冰雹天气气候特征分析及防御对策建议   总被引:1,自引:0,他引:1  
利用1971—-2006年东营市的气象观测资料,对东营市的冰雹天气气候特征进行了分析研究,结果表明:东营市的冰雹次数年均2.6d,最多达12d,主要集中在4-10月,5-6月较为集中,其中西部利津最多,南部广饶最少。就年代分布而言,70年代最多,80年代最少,进入21世纪又有逐渐增加的趋势。从历年逐日冰雹发生频次最高的时间来看,主要出现在每天的13—21时。在此基础上建立了冰雹预报预警服务平台,提出了防御的对策和建议。  相似文献   

10.
北京地区暖季对流天气的气候特征   总被引:10,自引:2,他引:10  
丁青兰  王令  陈明轩  王迎春  陶祖钰 《气象》2007,33(10):37-44
对北京地区最近12年暖季(5—9月)雷暴、冰雹、暴雨和大风等各种对流天气进行了气候统计和分析。统计结果表明:北京地区暖季发生对流的概率很高,按日数统计的气候概率达47.77%,大风、暴雨和冰雹气候概率分别为27.29%、10.84%和6.29%。暴雨多发季节为7月中旬到8月上旬。冰雹集中于6月中、下旬。在对流天气的地理分布上,北京西北部、东北部山区及西南部山区多对流天气,中心区和东南部平原地区对流天气较少。暴雨呈西南—东北方向带状分布,东北部山区、中部和东南部平原地区多发生暴雨,而西北部和西南部山区很少发生暴雨。山区冰雹明显多于平原。西北部和东北部山区大风偏多。暴雨有明显的夜发性。冰雹集中发生在午后到傍晚,占冰雹总站次的76.72%。  相似文献   

11.
采用1970~2015年5~9月大风和雷暴地面观测资料及雷暴重要天气报资料,运用统计方法对河南省雷暴大风的气候特征及其近几年的时空分布进行分析。结果表明:(1)1971年雷暴大风出现天数最多,2006和2014年出现最少。雷暴大风总日数显著减少,6~8月减少更为明显。1989年前后发生突变。7月雷暴大风出现最多,其次6月和8月。(2)日变化呈单峰结构,16~18时为出现的集中时段。(3)频发区集中在两个区域,一个位于黄河以北和沿黄河附近地势较为平坦的地区,另一个位于南阳盆地及伏牛山脉东侧。这与造成雷暴大风的天气尺度和中尺度系统及地形有关。不同区域雷暴大风出现的日数和持续时间有所不同。(4)区域性雷暴大风6月出现最多,其次为7月,9月出现最少;呈逐年减少趋势。(5)近10a来,5、6月雷暴大风明显减少,8月呈明显增多趋势。  相似文献   

12.
通过对广饶县1959—2008年发生的67次冰雹天气的气候特征进行分析,结果表明:广饶县的冰雹次数年均为1.3天,最多达4天,主要集中在4—10月份,以5—6月份最为集中。其中小清河以北出现的次数明显多于小清河以南地区。从历年逐时冰雹发生的频次最高的时间来看,主要出现在每天的13—21时。造成广饶县出现冰雹的主要影响系统是冷涡横槽。  相似文献   

13.
卓鸿  王冀  霍苗  任佳  纪鹏飞 《湖北气象》2016,(4):371-377
利用2001—2014年共14 a的北京首都国际机场(以下简称机场)观测资料和Micaps高空及地面观测资料,将发生在机场的雷暴日分为八类(即强雷暴、弱雷暴、湿对流、干对流、弱冰雹、强冰雹、冰雹大风和混合对流),对每种类型雷暴的气候特征进行了统计研究,得出如下结论:(1)机场雷暴以弱雷暴为主,其次为干对流。弱雷暴和干对流在6月出现最多,强雷暴和湿对流在7月最多,弱冰雹出现在春末夏初及秋季,而冰雹大风出现在6—7月,混合对流仅在7月出现一次。(2)从500 h Pa形势来看,西风槽造成的雷暴过程最多,其它为西北气流型。500 h Pa为西风槽和低涡、西北气流时,地面辐合线触发的雷暴最多,其次为冷锋。500 h Pa为横槽时,冷锋触发的雷暴比例增加,没有由地形辐合线触发的雷暴。而副高边缘和低压倒槽类型的雷雨过程,触发系统主要为辐合线。(3)从月分布来看,低涡和西北气流型造成的雷雨在6月最多,但横槽和西风槽造成的雷雨出现最多的分别在7月和8月。西风槽、低涡和西北气流型造成的弱雷雨均最多,其次为干对流。而雷暴的地面触发系统以辐合线最多,主要出现在6月,冷锋触发的雷雨主要集中在5—6月,地形辐合线主要集中在7、8月。(4)横槽、西北气流型雷暴的日循环分布只有一个峰值,分别出现在05—12UTC和08—14UTC,但低涡和西风槽却有两个峰值,主峰值分别出现在12—13UTC和08—17UTC,次峰值分别在07—08UTC和00—01UTC。  相似文献   

14.
山东省聊城市冰雹天气气候特征和影响系统   总被引:1,自引:0,他引:1  
利用1986~2004年的常规气象观测资料,对聊城地区的冰雹气候特征、产生冰雹天气的大气环流特征和天气系统特征进行了分析研究;研究了聊城冰雹的源地和地理、地形对冰雹天气的作用,结果表明:聊城的冰雹年均2.7 d,最多8 d,主要集中在4~9月,6月最多。其中,聊城南部的冠县降雹最多,东南部的东阿降雹最少;冰雹天气的主要影响系统有5类,低涡、低槽、横槽、西北气流和副热带高压边缘西南气流,其中,低涡影响降雹最多,中高层西北气流影响次之。聊城的冰雹源地分为2类:移入类和当地生成类。移入聊城的冰雹路径有3种:西路、西北路和北路;聊城的地理位置和地形特征对冰雹天气的形成具有非常重要的作用。  相似文献   

15.
利用常规探空观测和WRF分析场等资料,分析了2005—2014年沈阳地区强对流天气的气候背景特征、演变规律及日变化特征等,将强对流天气划分为冰雹、雷暴大风(≥17.2 m·s-1)、短时强降水(≥20 mm·h-1)和混合型4种类型;并分析探空资料在强对流天气潜势预报中的作用,着重探讨14时(02时)探空资料对沈阳地区强对流天气短时临近潜势预报的作用。结果表明:2005—2014年沈阳地区4种强对流天气中,以短时强降水天气发生次数最多,其次为雷暴大风天气,冰雹天气的发生次数最少,多数强对流天气发生在午后至傍晚。由合成T-Log P图的温湿廓线可知,沈阳地区短时强降水天气发生时中低层存在显著湿区,与雷暴大风和冰雹为主的强对流天气温湿廓线明显不同,多数合成T-Log P图的显著特点为中层大气干燥。冰雹型强对流天气的0℃层和-20℃层高度明显低于其他强对流天气类型的高度;冰雹型强对流天气T700-T500和T850-T500显著大于短时强降水型及雷暴大风型强对流天气,且T850-T500的指示意义更好;4种强对流天气类型平均SI均出现了正值,说明SI失去了不稳定性的指示意义;短时强降水天气的K指数明显高于冰雹天气;雷暴大风天气发生时对流有效位能明显小于其他强对流天气类型。可见,WRF中尺度模式中的T-Log P预报图对沈阳地区强对流天气的预报具有一定的指导意义。  相似文献   

16.
采用中川1985~1994年资料统计分析中川机场雷暴的气候特征:中川雷暴强度较弱、风小、雨少、时间短;雷暴集中出现在5~9月;雷暴日变化明显,以午后到03时居多;雷暴大风移过本站前多为偏南风,后多为偏北风;雷暴可带来降水,大风、扬沙、冰雹等天气,雷暴时能见度一般大于10km。  相似文献   

17.
利用2011—2015年4—9月华北地区主要区域(北京、天津、河北、山西)的重要天气报和雷暴观测资料,统计分析了该地区雷暴大风的时空分布等特征。结果表明,华北地区雷暴大风出现最多的月份为6—7月,最多的时次为下午到前半夜,大范围雷暴大风天气过程起始时间多为13:00(北京时,下同)-15:00,持续时间为4~8 h,高海拔地区出现雷暴大风的频次大于低海拔地区。在将华北地区站点分为高海拔站点和低海拔站点的基础上,使用2011—2013年4—9月的NCEP物理量分析场对雷暴大风过程的指示性进行统计分析,结果表明:多数常用的热力指标需考虑季节因素;下沉对流有效位能阈值基本不随季节变化,并对高海拔和低海拔区域的雷暴大风的出现及其范围均有一定的指示性;对流抑制能量、0~3 km垂直风切变、低层散度、500 hPa风场、整层可降水量、500 hPa相对湿度08:00—14:00变化等物理量在一些具体方面对于雷暴大风的出现及范围有一定的指示性。主要发生在高海拔地区的雷暴大风天气过程,850 hPa的相对湿度均在50%以下;主要发生在低海拔地区的雷暴大风天气过程,850 hPa的相对湿度基本在50%以上;850 hPa相对湿度较大的大范围雷暴大风天气过程,850 hPa和500 hPa的温差在24~28℃,850 hPa相对湿度较小的大范围雷暴大风天气过程,850 hPa和500 hPa的温差则常常达到30℃或以上。  相似文献   

18.
利用2006—2015年逐日气象观测资料,对机场预选址区域的温度、湿度、降水量、风向风速、能见度和灾害性天气等对机场选址有影响的天气气候条件进行了统计分析。研究结果表明,沈阳市浑南区作为机场预选址,降水具有明显的年变化和月变化特征,降水主要集中在6—8月份;主导盛行风向为SW,频率为12.4%,弱风和静风频率高,为53.5%;低能见度日数少,能见度条件好,出现500m的年平均日数为5.5d;灾害性天气较少,大风、雷暴、冰雹、暴雨、暴雪、扬沙和积雪年平均日数分别为0.5d、2.4d、0.1d、0.2d、0.1d、1.7d和7.4d,无沙尘暴天气发生。总体而言,沈阳市浑南区具备建设机场的优良天气气候条件,有利于机场工程设计及将来的航空飞行安全。  相似文献   

19.

根据灾情观测资料、重要天气报告资料,从多角度对京津冀地区雷暴大风进行了统计分析,结合MICAPS资料、NCEP资料、自动站资料以及多普勒天气雷达资料,讨论了雷暴大风形成的天气条件、类型和风暴特征,结果表明:雷暴大风主要分布在北京西北部山区、沿海地区以及西北部高原,平原相对较少,近30 a演变趋势为振荡减少。雷暴大风最早始于3月中旬,最晚终于11月上旬,6月下旬达到顶峰,6、7月份为最多月份,14—20时为日高峰期。雷暴大风的旬、月分布与冷空气活动、南支急流的位置有关;雷暴大风的形成,5、9月份需要更高的热力条件和动力条件,6、7、8月份需要更高的不稳定条件和能量条件;西北气流型和低涡型是产生雷暴大风日数最多的天气类型。各类型天气系统的月分布与冷空气活动、副热带高压位置以及南支急流的强度、位置有关;雷暴大风的范围与影响系统的尺度和强度有关,冷锋和低涡出现区域性雷暴大风天气的几率最高,且级别越高,冷锋的优势越明显;雷暴大风过程多单体风暴最多,飑线次之。雷暴大风的范围与风暴的强弱有关,飑线、超级单体风暴是出现区域性雷暴大风几率最高的对流风暴,且级别越高,飑线的优势越明显。

  相似文献   

20.
根据灾情观测资料、重要天气报告资料,从多角度对京津冀地区雷暴大风进行了统计分析,结合MICAPS资料、NCEP资料、自动站资料以及多普勒天气雷达资料,讨论了雷暴大风形成的天气条件、类型和风暴特征,结果表明:雷暴大风主要分布在北京西北部山区、沿海地区以及西北部高原,平原相对较少,近30 a演变趋势为振荡减少。雷暴大风最早始于3月中旬,最晚终于11月上旬,6月下旬达到顶峰,6、7月份为最多月份,14—20时为日高峰期。雷暴大风的旬、月分布与冷空气活动、南支急流的位置有关;雷暴大风的形成,5、9月份需要更高的热力条件和动力条件,6、7、8月份需要更高的不稳定条件和能量条件;西北气流型和低涡型是产生雷暴大风日数最多的天气类型。各类型天气系统的月分布与冷空气活动、副热带高压位置以及南支急流的强度、位置有关;雷暴大风的范围与影响系统的尺度和强度有关,冷锋和低涡出现区域性雷暴大风天气的几率最高,且级别越高,冷锋的优势越明显;雷暴大风过程多单体风暴最多,飑线次之。雷暴大风的范围与风暴的强弱有关,飑线、超级单体风暴是出现区域性雷暴大风几率最高的对流风暴,且级别越高,飑线的优势越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号