首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

2.
Analysis of daily variability of temperature in climate model experiments is important as a model diagnostic and for determination of how such variability may change under perturbed climate conditions. The latter could be important from a climate impacts perspective. We analyze daily mean, diurnal range and variability of surface air temperature in two continuous 3 1/2 year long climate simulations over the continental USA, one for present day conditions and one for conditions under doubled carbon dioxide concentration, conducted with a regional climate model (RegCM), on a 60 km grid, nested in a general circulation model (GCM). Model output is compared with a 30-year daily observational data set for various regions of the USA. In comparison with observations the diurnal range in the model control run is somewhat too low although the daily temperature mean is often well reproduced. The daily variability of temperature is underestimated by the model in all areas, but particularly when and where the observed variability is relatively high. Causes for these underestimations are traced to deficiencies in the general circulation of the driving GCM. With doubled CO2, both maximum and minimum temperatures increase, but the change in the diurnal temperature range (DTR) varies spatially and seasonally. On an annual average over the land domain, the DTR decreases by 0.25'C. Changes in DTR are most strongly correlated with changes in absorbed shortwave radiation at the surface, which explains 72% of the variance in DTR on an annual basis. Change in evaporation was a factor affecting DTR only in the summer when it explained 52% of the variance. The most significant findings with CO2 doubling are substantial decreases in daily variability in winter over large portions of the domain, and localized increases in summer. Causes for these changes are traced to fluctuations in the intensity and position of the jet stream.  相似文献   

3.
The author investigates the prediction of Northeast China’s winter surface air temperature (SAT),and first forecast the year to year increment in the predic-tand and then predict the predictand.Thus,in the first step,we determined the predictors for an increment in winter SAT by analyzing the atmospheric variability associated with an increment in winter SAT.Then,multi-linear re-gression was applied to establish a prediction model for an increment in winter SAT in Northeast China.The pre-diction model shows a high correlation coefficient (0.73) between the simulated and observed annual increments in winter SAT in Northeast China throughout the period 1965-2002,with a relative root mean square error of -7.9%.The prediction model makes a reasonable hindcast for 2003-08,with an average relative root mean square error of -7.2%.The prediction model can capture the in-creasing trend of winter SAT in Northeast China from 1965-2008.The results suggest that this approach to forecasting an annual increment in winter SAT in North-east China would be relevant in operational seasonal forecasts.  相似文献   

4.
A crop growth simulation model based on SUCROS87 was constructed to study the effects of temperature rise and increase of the atmospheric CO2 concentration on spring wheat yields in The Netherlands. The model simulated potential production (limited by crop characteristics, temperature and radiation but without any stress from water or nutrient shortages or pests, diseases and weeds) and water-limited production in which growth is also limited by water shortage. The model was validated for the present climatic conditions. When daily weather data from a nearby station were used, the model was well able to simulate yields obtained in field experiments.Effects of several combinations of temperature rise and atmospheric CO2 concentration on simulated yields were studied. A temperature rise resulted in a reduction in simulated yield due to shortening of the growing period. Large variations existed in the magnitude of this reduction. Increases in atmospheric CO2 concentration led to yield increases due to higher assimilation rates and to increase of the water use efficiency. Combination of temperature rise and higher CO2 concentration resulted in small yield increases in years in which water was not limiting growth and large yield increases in dry years.Change of variety or of sowing date could not reduce the negative effects of temperature rise on simulated yields.  相似文献   

5.
Abstract

The performance of two Canadian land surface schemes of widely differing complexity is compared and contrasted in a pair of year‐long simulations using the GCM developed at Atmospheric Environment Service, Canada. The old land surface model incorporates the force‐restore method for soil temperatures and the bucket approximation for soil moisture; the new model, CLASS (Canadian Land Surface Scheme) features three soil layers, an explicitly modelled snow layer, a thermally separate vegetation canopy, and physically‐based calculations of heat and moisture transfers between all of the land surface components and the atmosphere.

It was reported in previous papers that compared with observations, the old scheme tends to generate a climate which is characterized by anomalously high precipitation rates and cold temperatures over land. In this paper, by reference to field measurements and to the energy fluxes and temperatures generated by the two models at local scales, the hypotheses earlier postulated as to the underlying reasons for this are validated. The main factor contributing to the climate anomalies observed with the old scheme is found to be its generation of excessive evaporation rates; this is caused by the fact that the evaporation rate is never directly energy‐limited, the fact that the scaling of the evaporation rale with decreasing soil moisture content underestimates the effect of vegetation stomatal resistance, and the fact that the evaporation rate over bare soil depends not on the surface soil moisture, but on the moisture content of whole modelled soil column. The cold surface temperatures are additionally attributed to systematic errors incurred by the forward‐stepping temperature scheme, and to the fact that soils subjected to subzero temperature forcing in the winter are modelling as freezing completely. Finally, the inability of the old scheme to simulate partially frozen soils means that it proves unable to handle either shallow frost penetration at temperature latitudes, or the development of an active layer in permafrost.  相似文献   

6.
The meridional energy flux modelled by the Bureau of Meteorology Research Centre general circulation model is examined. It is divided into atmospheric and oceanic components, and the resolved atmospheric components in turn into mean and eddy circulations. Comparison with observations shows the modelled total planetary meridional energy transport to be low, but shows better agreement for the resolved atmospheric component alone. The overall patterns of the individual circulation and energy components of the model also agree well, although strengths and locations do show some discrepancies. The doubled CO2 climate change is analyzed in terms of the changes in each of the circulation and energy components. It is found that the changes are the relatively small residual of larger, and generally opposing changes in sensible heat and potential energy fluxes. Despite the general decrease in poleward energy flux, the poleward latent heat flux is found to increase. The reduction in poleward transport is found to be dominated by changes in the mean meridional circulation at low southern latitudes, and changes in both mean circulations and eddy fluxes elsewhere.  相似文献   

7.
8.
We examine the climatological diurnal cycle of surface air temperature in a 6 km resolution atmospheric simulation of Southern California from 1995 to the present. We find its amplitude and phase both have significant geographical structure. This is most likely due to diurnally-varying flows back and forth across the coastline and elevation isolines resulting from the large daily warming and cooling over land. Because the region’s atmosphere is generally stably stratified, these flow patterns result in air of lower (higher) potential temperature being advected upslope (downslope) during daytime (nighttime). This suppresses the temperature diurnal cycle amplitude at mountaintops where diurnal flows converge (diverge) during the day (night). The nighttime land breeze also advects air of higher potential temperature downslope toward the coast. This raises minimum temperatures in land areas adjacent to the coast in a manner analogous to the daytime suppression of maximum temperature by the cool sea breeze in these same areas. Because stratification is greater in the coastal zone than in the desert interior, these thermal effects of the diurnal winds are not uniform, generating spatial structures in the phase and shape of the temperature diurnal cycle as well as its amplitude. We confirm that the simulated characteristics of the temperature diurnal cycle as well as those of the associated diurnal winds are also found in a network of 30 observation stations in the region. This gives confidence in the simulation’s realism and our study’s findings. Diurnal flows are probably mainly responsible for the geographical structures in the temperature diurnal cycle in other regions of significant topography and surface heterogeneity, their importance depending partly on the degree of atmospheric stratification.  相似文献   

9.
Two experiments are performed with the NCAR Community Climate Model (CCM) coupled to a swamp ocean with annually averaged solar forcing. A swamp ocean model is one in which the ocean temperature is computed from a surface energy balance. Both experiments are run with present (1 × CO2) and doubled (2 × CO2) amounts of atmospheric carbon dioxide (CO2). The first tests the sensitivity of the model to a snow and sea-ice-albedo formulation which facilitates relatively greater ice melt. The second assesses the model response when the basic state of the model in the control run is colder due to a 2% decrease in solar constant. Both are compared to a previous experiment with the same model using a different snow and sea-ice-albedo formulation and the present value of the solar constant. It is found that the globally averaged surface air temperature increase due to a doubling of CO2 is highly dependent on (1) the type of snow-sea-ice-albedo formulation used such that the parameterization which better facilitates relatively greater ice melt exhibits a greater sensitivity to increased CO2, and (2) the basic state of the control run such that the colder the basic state, the greater the warming due to increased CO2.A portion of this study is supported by the U.S. Department of Energy as part of its Carbon Dioxide Research Program.The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

10.
A global atmospheric model is used to calculate the monthly river flow for nine of the world's major high latitude rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4° × 5°, but the model's runoff from each grid box is quartered and added to the appropriate river drainage basin on a 2° × 2.5° resolution. A routing scheme is used to move runoff from a grid box to its neighboring downstream grid box and ultimately to the mouth of the river. In a model simulation in which atmospheric carbon dioxide is doubled, mean annual precipitation and river flow increase for all of these rivers, increased outflow at the river mouths begins earlier in the spring, and the maximum outflow occurs approximately one month sooner due to an earlier snow melt season. In the doubled CO2 climate, snow mass decreases for the Yukon and Mackenzie rivers in North America and for rivers in northwestern Asia, but snow mass increases for rivers in northeastern Asia.  相似文献   

11.
A large scale numerical time-dependent model of sea ice that takes into account the heat fluxes in and out of the ice, the seasonal occurrence of snow, and ice motions has been used in an experiment to determine the response of the Arctic Ocean ice pack to a warming of the atmosphere. The degree of warming specified is that expected for a doubling of atmospheric carbon dioxide with its associated greenhouse effect, a condition that could occur before the middle of the next century. The results of three 5-year simulations with a warmer atmosphere and varied boundary conditions were: (1) that in the face of a 5 K surface atmospheric temperature increase the ice pack disappeared completely in August and September but reformed in the central Arctic Ocean in mid fall; (2) that the simulations were moderately dependent on assumptions concerning cloud cover; and (3) that even when atmospheric temperature increases of 6–9 K were combined with an order-of-magnitude increase in the upward heat flux from the ocean, the ice still reappeared in winter. It should be noted that a year-round ice-free Arctic Ocean has apparently not existed for a million years or more.Currently on leave, working for the World Meteorological Organization in Geneva, Switzerland, on the World Climate Programme.The calculations for this work were carried out while both authors were at the National Center for Atmospheric Research (NCAR), which is sponsored by the National Science Foundation.  相似文献   

12.
A crop-growth-simulation model based on SUCROS87 was used to study effects of temperature rise and increase of atmospheric CO2 concentration on wheat yields in several regions in Europe. The model simulated potential and water-limited crop production (growth with ample supply of nutrients and in the absence of damage by pests, diseases and weeds). Historic daily weather data from 13 sites in Western Europe were used as starting point.For potential production (optimal water) a 3 °C temperature rise led to a yield decline due to a shortening of the growing period on all locations. Doubling of the CO2 concentration caused an increase in yield of 40% due to higher assimilation rates. It was found that effects of higher temperature and higher CO2 concentration were nearly additive and the combination of both led to a yield increase of 1–2 ton ha-1. A very small CO2-temperature interaction was found: the effect of doubled CO2 concentration on crop yield was larger at higher temperatures. The inter-annual yield variability was hardly affected.When water was limiting crop-production effects of temperature rise and higher CO2 levels were different than for the potential production. Rise in temperature led to a smaller yield reduction, doubled CO2 concentration to a larger yield increase and combination of both led to a large yield increase (3 ton ha-1) in comparison with yields simulated for the present situation. Both rise in temperature and increase in the CO2 concentration reduced water requirements of the crop. Water shortages became smaller, leading to a reduction in inter-annual variability. It is concluded that when no major changes in precipitation pattern occur a climate change will not affect wheat yields since negative effects of higher temperatures are compensated by positive effects of CO2 enrichment.  相似文献   

13.
The Kolmogorov constants for CO2, wind velocity, air temperature, and humidity fluctuations were evaluated from measurements made over soybean and grain sorghum fields and found to be 0.78 ± 0.11, 0.49 ± 0.08, 0.70 ± 0.15, and 0.99 ± 0.16, respectively. These results are consistent with recent observations reported in the literature.Published as Paper No. 7255, Journal Series, Nebraska Agricultural Experiment Station. The work reported here was conducted under Regional Research Project 11-33 and Nebraska Agricultural Experiment Station Project 27-003.Associate Professor and Post Doctoral Research Associate, respectively, Center for Agricultural Meteorology and Climatology, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, NE, U.S.A., 68583-0728.  相似文献   

14.
The spatiotemporal variability of surface air pressure and surface air temperature in the Northern Hemisphere troposphere in 1990-2014 is described. In 2005 the low-frequency component (LFC) of average air temperature in January averaged over the latitude zone of 32.5°-67.5° N has stopped its increase that lasted for 35 years (from 1970). The LFC of air temperature in July has continued growing since 1975 (for 39 years). The anomalies of air pressure and air temperature for thirty-year periods and the dynamics of LFC of air temperature and air pressure in the atmospheric centers of action are analyzed.  相似文献   

15.
Cited are the latest data on the contemporary climate changes in surface air temperature (to the year 2011 inclusive). Substantiated is the necessity of extending the concept on the normals and anomalies of surface air temperature under conditions of the changing climate. Formulated is a concept of “dynamic normals” and “dynamic anomalies” of surface air temperature taking account of current trends of climate change and interseasonal variations. It is proposed to adopt this concept both for the problems of forthcoming climate change assessments and for the long-range forecasting out of the “limit of predictability.” An adaptive regression method is proposed to compute such dynamic normals as a function of the indicator of global climate changes. Presented are the skill scores of dynamic normals as of “intermediate” forecasts (an analogue of the climate forecast under a changing climate).  相似文献   

16.
17.
A model intercomparison in terms of surface air temperature annual cycle ampitude-phase characteristics(SAT AC APC)is performed. The models included in the intercomparison belong to two groups:five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic consituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT,also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics laterthan-observed spring and autumn moments. The models with larger(smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger(smaller)interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°-70°N and 60°-70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice.No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing.There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT.It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the coupled than for the atmospheric models.  相似文献   

18.
19.
The Northern Hemisphere winter (DJF) stationary eddy response of a general circulation model (GCM) to a doubling of atmospheric CO2 is simulated with a linear steady state model as a response to anomalies in diabatic heating (latent, sensible and radiative), mountain and transient eddy effects. For this analysis the doubled CO2 experiment performed by Wilson and Mitchell (1987) is used. The linear simulations of the control and perturbation climate capture most of the important features of the GCMs stationary eddies. The simulation of the anomalous stationary eddy pattern in the Northern Hemisphere captures only some of the important features of the GCMs anomalies. The climate anomalies in the Southern Hemisphere are poorly simulated. In the Northern Hemisphere the climate anomalies are dominated by the effect of transient eddies and mountains. In low latitudes also the contribution of latent heating is important. The contributions of sensible and radiative heating are small.  相似文献   

20.
Global precipitation data sets with high spatial and temporal resolution are needed for many applications, but they were unavailable before the recent creation of several such satellite products. Here, we evaluate four different satellite data sets of hourly or 3-hourly precipitation (namely CMORPH, PERSIANN, TRMM 3B42 and a microwave-only product referred to as MI) by comparing the spatial patterns in seasonal mean precipitation amount, daily precipitation frequency and intensity, and the diurnal and semidiurnal cycles among them and with surface synoptic weather reports. We found that these high-resolution products show spatial patterns in seasonal mean precipitation amount comparable to other monthly products for the low- and mid-latitudes, and the mean daily precipitation frequency and intensity maps are similar among these pure satellite-based precipitation data sets and consistent with the frequency derived using weather reports over land. The satellite data show that spatial variations in mean precipitation amount come largely from precipitation frequency rather than intensity, and that the use of satellite infrared (IR) observations to improve sampling does not change the mean frequency, intensity and the diurnal cycle significantly. Consistent with previous studies, the satellite data show that sub-daily variations in precipitation are dominated by the 24-h cycle, which has an afternoon–evening maximum and mean-to-peak amplitude of 30–100% of the daily mean in precipitation amount over most land areas during summer. Over most oceans, the 24-h harmonic has a peak from midnight to early morning with an amplitude of 10–30% during both winter and summer. These diurnal results are broadly consistent with those based on the weather reports, although the time of maximum in the satellite precipitation is a few hours later (especially for TRMM and PERSIANN) than that in the surface observations over most land and ocean, and it is closer to the phase of showery precipitation from the weather reports. The TRMM and PERSIANN precipitation shows a spatially coherent time of maximum around 0300–0600 local solar time (LST) for a weak (amplitude <20%) semi-diurnal (12-h) cycle over most mid- to high-latitudes, comparable to 0400–0600 LST in the surface data. The satellite data also confirm the notion that the diurnal cycle of precipitation amount comes mostly from its frequency rather than its intensity over most low and mid-latitudes, with the intensity has only about half of the strength of the diurnal cycle in the frequency and amount. The results suggest that these relatively new precipitation products can be useful for many applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号