首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The open service network for marine environmental data (NETMAR) project uses semantic web technologies in its pilot system which aims to allow users to search, download and integrate satellite, in situ and model data from open ocean and coastal areas. The semantic web is an extension of the fundamental ideas of the World Wide Web, building a web of data through annotation of metadata and data with hyperlinked resources. Within the framework of the NETMAR project, an interconnected semantic web resource was developed to aid in data and web service discovery and to validate Open Geospatial Consortium Web Processing Service orchestration. A second semantic resource was developed to support interoperability of coastal web atlases across jurisdictional boundaries. This paper outlines the approach taken to producing the resource registry used within the NETMAR project and demonstrates the use of these semantic resources to support user interactions with systems. Such interconnected semantic resources allow the increased ability to share and disseminate data through the facilitation of interoperability between data providers. The formal representation of geospatial knowledge to advance geospatial interoperability is a growing research area. Tools and methods such as those outlined in this paper have the potential to support these efforts.  相似文献   

2.
Adaptable User Profiles for Intelligent Geospatial Queries   总被引:1,自引:0,他引:1  
The geospatial information user community is becoming increasingly diverse, with numerous users accessing distributed datasets for various types of applications. Currently in GIS, unlike traditional databases, there is a lack of machine learning algorithms to customize information retrieval results. Thus the particular interests of individual users are not taken into account in traditional geospatial queries. In this paper we present a system that adjusts query results based on user requirements and needs. It does so by using a collection of fuzzy functions that express user preference specifically in GIS environments. The focus of this work is on preference learning for one‐dimensional, quantitative attributes, and on the customization of geospatial queries using this information. The model used to express user preferences adjusts gradually to the underlying complexity during a training process, starting with fairly simple linear functions and progressing to complex non‐linear ones as needed. Our advanced modeling capabilities are demonstrated through an applicability example, and statistical simulations show the robustness of our system.  相似文献   

3.
The volume of publically available geospatial data on the web is rapidly increasing due to advances in server-based technologies and the ease at which data can now be created. However, challenges remain with connecting individuals searching for geospatial data with servers and websites where such data exist. The objective of this paper is to present a publically available Geospatial Search Engine (GSE) that utilizes a web crawler built on top of the Google search engine in order to search the web for geospatial data. The crawler seeding mechanism combines search terms entered by users with predefined keywords that identify geospatial data services. A procedure runs daily to update map server layers and metadata, and to eliminate servers that go offline. The GSE supports Web Map Services, ArcGIS services, and websites that have geospatial data for download. We applied the GSE to search for all available geospatial services under these formats and provide search results including the spatial distribution of all obtained services. While enhancements to our GSE and to web crawler technology in general lie ahead, our work represents an important step toward realizing the potential of a publically accessible tool for discovering the global availability of geospatial data.  相似文献   

4.
Mobile Location‐Based Services (mLBS) are an increasingly consumer‐based concept borne from, and continually driven by, technology‐centred development; as opposed to the needs of end users. Where users have been made a focus, the research generally concerns issues of overall system appearance, functionality, information content and interaction methods, with little emphasis on the component geospatial representations. This paper describes the initial stages of a research project aimed at filling this void through the application of a qualitative User‐Centred Design (UCD) methodology for optimising geospatial representations within mLBS applications, in order to support a selected user group: Australian ‘leisure‐based travellers’. Presented in this paper is an account of two UCD activities adopted for the research. The first, user profiling, served to define the target user population in terms of their technological, geospatial and travel experiences, using an online questionnaire. The second, user task analysis, involved in‐depth interviews with a subset of users in order to obtain a deeper understanding of the geospatial goals, tasks, needs and preferences within the population, as well as the range of user differences and variability in tasks present. An overall user assessment, through combined analysis of the two result sets, highlighted considerations for the ongoing research, including a set of specific implications for the design of alternative models for geospatial services, representations and interactions. The themes described in this paper represent an initial and necessary component of UCD, which has been largely overlooked in research relating to mLBS. Whilst the focus here is on a specific user group and context of use, it is envisaged that many of the concepts tested and ratified by the resulting models will be relevant to mLBS applications in general.  相似文献   

5.
Machine learning allows “the machine” to deduce the complex and sometimes unrecognized rules governing spatial systems, particularly topographic mapping, by exposing it to the end product. Often, the obstacle to this approach is the acquisition of many good and labeled training examples of the desired result. Such is the case with most types of natural features. To address such limitations, this research introduces GeoNat v1.0, a natural feature dataset, used to support artificial intelligence‐based mapping and automated detection of natural features under a supervised learning paradigm. The dataset was created by randomly selecting points from the U.S. Geological Survey’s Geographic Names Information System and includes approximately 200 examples each of 10 classes of natural features. Resulting data were tested in an object‐detection problem using a region‐based convolutional neural network. The object‐detection tests resulted in a 62% mean average precision as baseline results. Major challenges in developing training data in the geospatial domain, such as scale and geographical representativeness, are addressed in this article. We hope that the resulting dataset will be useful for a variety of applications and shed light on training data collection and labeling in the geospatial artificial intelligence domain.  相似文献   

6.
There are several issues with Web-based search interfaces on a Sensor Web data infrastructure. It can be difficult to (1) find the proper keywords for the formulation of queries and (2) explore the information if the user does not have previous knowledge about the particular sensor systems providing the information. We investigate how the visualization of sensor resources on a 3D Web-based Digital Earth globe organized by level-of-detail (LOD) can enhance search and exploration of information by easing the formulation of geospatial queries against the metadata of sensor systems. Our case study provides an approach inspired by geographical mashups in which freely available functionality and data are flexibly combined. We use PostgreSQL, PostGIS, PHP, and X3D-Earth technologies to allow the Web3D standard and its geospatial component to be used for visual exploration and LOD control of a dynamic scene. Our goal is to facilitate the dynamic exploration of the Sensor Web and to allow the user to seamlessly focus in on a particular sensor system from a set of registered sensor networks deployed across the globe. We present a prototype metadata exploration system featuring LOD for a multiscaled Sensor Web as a Digital Earth application.  相似文献   

7.
ABSTRACT

Linked Data is known as one of the best solutions for multisource and heterogeneous web data integration and discovery in this era of Big Data. However, data interlinking, which is the most valuable contribution of Linked Data, remains incomplete and inaccurate. This study proposes a multidimensional and quantitative interlinking approach for Linked Data in the geospatial domain. According to the characteristics and roles of geospatial data in data discovery, eight elementary data characteristics are adopted as data interlinking types. These elementary characteristics are further combined to form compound and overall data interlinking types. Each data interlinking type possesses one specific predicate to indicate the actual relationship of Linked Data and uses data similarity to represent the correlation degree quantitatively. Therefore, geospatial data interlinking can be expressed by a directed edge associated with a relation predicate and a similarity value. The approach transforms existing simple and qualitative geospatial data interlinking into complete and quantitative interlinking and promotes the establishment of high-quality and trusted Linked Geospatial Data. The approach is applied to build data intra-links in the Chinese National Earth System Scientific Data Sharing Network (NSTI-GEO) and data -links in NSTI-GEO with the Chinese Meteorological Data Network and National Population and Health Scientific Data Sharing Platform.  相似文献   

8.
Abstract

The geospatial sciences face grand information technology (IT) challenges in the twenty-first century: data intensity, computing intensity, concurrent access intensity and spatiotemporal intensity. These challenges require the readiness of a computing infrastructure that can: (1) better support discovery, access and utilization of data and data processing so as to relieve scientists and engineers of IT tasks and focus on scientific discoveries; (2) provide real-time IT resources to enable real-time applications, such as emergency response; (3) deal with access spikes; and (4) provide more reliable and scalable service for massive numbers of concurrent users to advance public knowledge. The emergence of cloud computing provides a potential solution with an elastic, on-demand computing platform to integrate – observation systems, parameter extracting algorithms, phenomena simulations, analytical visualization and decision support, and to provide social impact and user feedback – the essential elements of the geospatial sciences. We discuss the utilization of cloud computing to support the intensities of geospatial sciences by reporting from our investigations on how cloud computing could enable the geospatial sciences and how spatiotemporal principles, the kernel of the geospatial sciences, could be utilized to ensure the benefits of cloud computing. Four research examples are presented to analyze how to: (1) search, access and utilize geospatial data; (2) configure computing infrastructure to enable the computability of intensive simulation models; (3) disseminate and utilize research results for massive numbers of concurrent users; and (4) adopt spatiotemporal principles to support spatiotemporal intensive applications. The paper concludes with a discussion of opportunities and challenges for spatial cloud computing (SCC).  相似文献   

9.
Abstract

Recommender systems (RS), as supportive tools, filter information from a massive amount of data based on the determined preferences. Most of the RS require information about the context of users such as their locations. In such cases, location-aware recommender systems (LARS) can be employed to suggest more personalized items to the users. The most current research projects on LARS focus on the development of algorithms, evaluation methods and applications. However, the role of up-to-date spatial databases in LARS is not a well-researched area. The up-to-date spatial information would potentially improve the accuracy of items which are recommended by LARS. Volunteered geographic information (VGI) could be a low-cost source of up-to-date spatial information for LARS. This article proposes an approach to enrich spatial databases of LARS by VGI. Since not all records of VGI are fitted for use in LARS, a mechanism is developed to identify useful information. Some VGI data sets refer to existing spatial data in the database while other VGI data sets are shared for the first time. Therefore, the proposed method assessed the quality of VGI with reference source (for VGI which is existed in the database) and VGI without reference source (for VGI which is shared for the first time). To demonstrate the feasibility of the proposed approach, a mobile application has been developed to recommend suitable restaurants to the users based on their geospatial locations. The evaluation of the method indicates that VGI can potentially enhance the functionality of the LARS in predicting the users’ interests.  相似文献   

10.
The global geospatial community is investing substantial effort in providing tools for geospatial data-quality information analysis and systematizing the criteria for geospatial data quality. The importance of these activities is increasing, especially in the last decade, which has witnessed an enormous expansion of geospatial data use in general and especially among mass users. Although geospatial data producers are striving to define and present data-quality standards to users and users increasingly need to assess the fitness for use of the data, the success of these activities is still far from what is expected or required. As a consequence, neglect or misunderstanding of data quality among users results in misuse or risks. This paper presents an aid in spatio-temporal quality evaluation through the use of spatio-temporal evaluation matrices (STEM) and the index of spatio-temporal anticipations (INSTANT) matrices. With the help of these two simple tools, geospatial data producers can systematically categorize and visualize the granularity of their spatio-temporal data, and users can present their requirements in the same way using business intelligence principles and a Web 2.0 approach. The basic principles and some examples are presented in the paper, and potential further applied research activities are briefly described.  相似文献   

11.
ABSTRACT

The current popularity of government open data platforms as a way to share geospatial data has created an opportunity for government to receive direct feedback and edits on this very same data. This research proposes four models that can define how government accepts direct edits and feedback on geospatial data. The four models are a “status quo” of open data provision, data curation, data mirroring, and crowdsourcing. These models are placed on a continuum of government control ranging from high levels of control over data creation to a low level of control. Each model is discussed, with relevant challenges highlighted. These four models present an initial suite of options for governments looking to accept direct edits from data end users and can be framed as a partial realization of many of the principles of open government. Despite the varied potential of these approaches, they generate a shift in locus of control away from government, creating several areas of risk for government. Of these models, near-term interest may focus on data curation and data mirroring as evolutionary, rather than revolutionary steps that expand on the simple provision of open data.  相似文献   

12.
Crowdsourcing geospatial data   总被引:6,自引:0,他引:6  
In this paper we review recent developments of crowdsourcing geospatial data. While traditional mapping is nearly exclusively coordinated and often also carried out by large organisations, crowdsourcing geospatial data refers to generating a map using informal social networks and web 2.0 technology. Key differences are the fact that users lacking formal training in map making create the geospatial data themselves rather than relying on professional services; that potentially very large user groups collaborate voluntarily and often without financial compensation with the result that at a very low monetary cost open datasets become available and that mapping and change detection occur in real time. This situation is similar to that found in the Open Source software environment.We shortly explain the basic technology needed for crowdsourcing geospatial data, discuss the underlying concepts including quality issues and give some examples for this novel way of generating geospatial data. We also point at applications where alternatives do not exist such as life traffic information systems. Finally we explore the future of crowdsourcing geospatial data and give some concluding remarks.  相似文献   

13.
The geospatial field significantly influences the development of the environmental domain, including a wide range of geospatial and cartographic information systems, such as Geographic Information Systems (GIS), Multimedia Atlas Information Systems (MAIS) and more recently web-based GIS (Web-GIS). In this context, we introduce web-based environmental geospatial information systems (Web-EGIS) as a special case of Web-GIS, aiming to integrate the functionalities of geospatial information systems with the enormous quantity of specialized, distributed and highly heterogeneous environmental geo-referenced data and services. We define three main characteristics of the Web-EGIS. The first is a generic hypercube-based data organization and visualization. The next characteristic is a standard-based, three-tier service-oriented architecture. The third and last characteristic is the traceability of the architectural and design decisions, for which we introduce the new concept of an ‘Environmental Application Context’, arguing that not only the functional but also the non-functional requirements (NFRs) have an important role in defining the architecture, software components and data services of such systems. In a nutshell, a Web-EGIS is characterized by a coherent user experience through the hypercube-based visualization concept, technically supported by a service-oriented architecture that is structured according to an extensive analysis of NFRs. On this basis, we introduce the Geodata visualization and interactive training environment (GeoVITe) Platform for Interdisciplinary Environmental Research as a reference implementation of a Web-EGIS with its basic design requirements, integrative hypercube-based visualization for heterogeneous data sources, extended web cartography functionalities, and its de facto system architecture. The concept of the hypercube-based visualization is better transferred to the system architecture by understanding the ‘Environmental Application Context’ of this particular Web-EGIS, which also makes it easier to maintain and enhance. The resulting system is a support platform for research activities in the environmental domain.  相似文献   

14.
ABSTRACT

The availability and quantity of remotely sensed and terrestrial geospatial data sets are on the rise. Historically, these data sets have been analyzed and quarried on 2D desktop computers; however, immersive technologies and specifically immersive virtual reality (iVR) allow for the integration, visualization, analysis, and exploration of these 3D geospatial data sets. iVR can deliver remote and large-scale geospatial data sets to the laboratory, providing embodied experiences of field sites across the earth and beyond. We describe a workflow for the ingestion of geospatial data sets and the development of an iVR workbench, and present the application of these for an experience of Iceland’s Thrihnukar volcano where we: (1) combined satellite imagery with terrain elevation data to create a basic reconstruction of the physical site; (2) used terrestrial LiDAR data to provide a geo-referenced point cloud model of the magmatic-volcanic system, as well as the LiDAR intensity values for the identification of rock types; and (3) used Structure-from-Motion (SfM) to construct a photorealistic point cloud of the inside volcano. The workbench provides tools for the direct manipulation of the georeferenced data sets, including scaling, rotation, and translation, and a suite of geometric measurement tools, including length, area, and volume. Future developments will be inspired by an ongoing user study that formally evaluates the workbench’s mature components in the context of fieldwork and analyses activities.  相似文献   

15.
16.
A Task-Based Ontology Approach to Automate Geospatial Data Retrieval   总被引:1,自引:0,他引:1  
This paper presents a task‐based and Semantic Web approach to find geospatial data. The purpose of the project is to improve data discovery and facilitate automatic retrieval of data sources. The work presented here helps create the beginnings of a Geospatial Semantic Web. The intent is to create a system that provides appropriate results to application users who search for data when facing tasks such as emergency response or planning activities. In our task‐based system, we formalize the relationships between types of tasks, including emergency response, and types of data sources needed for those tasks. Domain knowledge, including criteria describing data sources, is recorded in an ontology language. With the ontology, reasoning can be done to infer various types of information including which data sources meet specific criteria for use in particular tasks. The vision presented here is that in an emergency, for example, a user accesses a Web‐based application and selects the type of emergency and the geographic area. The application then returns the types and locations (URLs) of the specific geospatial data needed. We explore the abilities and limitations of the OWL Web Ontology Language along with other Semantic Web technologies for this purpose.  相似文献   

17.
空间服务语义模式的地理信息服务发现   总被引:1,自引:0,他引:1  
郑亮  李德仁 《测绘科学》2011,36(2):127-129
如何从大规模地理信息服务集合中快速且准确地发现目标服务是地理信息服务应用中的一个关键问题。当前基于关键字的服务发现方式缺乏语义支持,搜索效率低。本文在WSMO/WSML框架下,提出了一种基于空间服务语义模式的服务发现方法,将地理信息从语法模式转换为语义模式,明确表达空间数据中隐含的知识,有效克服数据源之间的语义异构。该方法能够显著提高地理信息服务发现的查全率和查准率。  相似文献   

18.
ABSTRACT

Many visions for geospatial technology have been advanced over the past half century. Initially researchers saw the handling of geospatial data as the major problem to be overcome. The vision of geographic information systems arose as an early international consensus. Later visions included spatial data infrastructure, Digital Earth, and a nervous system for the planet. With accelerating advances in information technology, a new vision is needed that reflects today’s focus on open and multimodal access, sharing, engagement, the Web, Big Data, artificial intelligence, and data science. We elaborate on the concept of geospatial infrastructure, and argue that it is essential if geospatial technology is to contribute to the solution of problems facing humanity.  相似文献   

19.
Travelling is a critical component of daily life. With new technology, personalized travel route recommendations are possible and have become a new research area. A personalized travel route recommendation refers to plan an optimal travel route between two geographical locations, based on the road networks and users’ travel preferences. In this paper, we define users’ travel behaviours from their historical Global Positioning System (GPS) trajectories and propose two personalized travel route recommendation methods – collaborative travel route recommendation (CTRR) and an extended version of CTRR (CTRR+). Both methods consider users’ personal travel preferences based on their historical GPS trajectories. In this paper, we first estimate users’ travel behaviour frequencies by using collaborative filtering technique. A route with the maximum probability of a user’s travel behaviour is then generated based on the naïve Bayes model. The CTRR+ method improves the performances of CTRR by taking into account cold start users and integrating distance with the user travel behaviour probability. This paper also conducts some case studies based on a real GPS trajectory data set from Beijing, China. The experimental results show that the proposed CTRR and CTRR+ methods achieve better results for travel route recommendations compared with the shortest distance path method.  相似文献   

20.
王晓明 《北京测绘》2021,35(1):24-29
利用原有平台进行城市基础地理空间勘测数据共享时,元数据数量过大,无法对元数据进行管理,请求次数在160次以内数据服务响应时间较长,因此需要设计一种新的城市基础地理空间勘测数据共享平台.该平台共由八个模块构成,包括服务器模块、基础地理空间勘测数据管理模块、基础地理空间勘测数据处理模块、网络服务模块、地图操作模块、元数据管...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号