首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits. 137–148 Ma Cu–Fe and 130–133 Ma Fe s...  相似文献   

4.
The Magushan skarn Cu–Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle–Lower Yangtze River Metallogenic Belt of eastern China. The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area. Here, we present new molybdenite Re–Os and titanite and andradite garnet U–Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas. The spatial and paragenetic relationships between the intrusions, alteration, and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite. However, this is not always the case, as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton. This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events. As such, the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area. Previously published zircon U–Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2 ± 1.2 Ma (MSWD = 1.4) whereas the Re–Os dating of molybdenite from the study area yielded an isochron age of 137.7 ± 2.5 Ma (MSWD = 0.43). The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet, yielding U–Pb ages of 136.3 ± 2.5 Ma (MSWD = 3.2) and 135.9 ± 2.7 Ma (MSWD = 2.5), respectively. The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma, strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion. The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district. providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area. This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration. This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism, respectively, in areas lacking other dateable minerals (e.g., molybdenite) or where the relationship between mineralization and magmatism is unclear, for example in areas with multiple stages of magmatism, with complexly zoned plutons, and with distal skarn mineralization.  相似文献   

5.
The Tongshan copper deposit in Anhui Province is a typical mid-sized skarn and porphyry type deposit in the Anqing–Guichi district along the Middle–Lower Yangtze River Valley, eastern China. The Tongshan intrusion is closely related to this mineralization. The intrusion mainly comprises rocks that are quartz diorite porphyry, quartz monzonite porphyry, and granodiorite porphyry. Plagioclase in these rocks is mostly andesine (An = 31.0–42.9), along with minor oligoclase. Biotite is magnesium-rich [Mg/(Mg + Fe) = 0.52–0.67] and aluminum-poor (Al2O3 = 12.32–14.09 wt.%), and can be classified as magnesio-biotite. Hornblende is TiO2-poor (<1.96 wt.%) and magnesium-rich [Mg/(Mg + Fe) > 0.60], and is magnesio-hornblende or edenite. The SHRIMP zircon U–Pb age of the quartz monzonite porphyry is 145.1 ± 1.2 Ma, which corresponds to the middle Yanshanian period. Whole-rock geochemical results show that the rocks are silica-rich (SiO2 = 60.23–66.23 wt.%) and alkali-rich (K2O + Na2O = 4.97–8.72 wt.%), and low in calcium (CaO = 2.61–5.66 wt.%). Trace element results show enrichments in large ion lithophile element (e.g., K, Rb, and Ba) and depletions in some high field strength elements (e.g., Nb, Ta, P, and Ti). The total rare earth element (REE) content of the rocks is low (ΣREE < 200 μg/g), and they exhibit light REE enrichment [(La/Yb)N > 10] and small positive Eu anomalies (average δEu = 1.16). These mineralogical, geochronological, and geochemical results show that the intrusion has a mixed crust–mantle source. The Tongshan intrusion was formed by multiple emplacements of crustally contaminated basaltic magma generated by varying degrees of partial melting of enriched lithospheric mantle and lower crust. Hornblende thermobarometry yielded magmatic crystallization temperatures of 652–788 °C and an average crystallization pressure of 1.4 kbar, which corresponds to a depth of approx. 4.7 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 735–775 °C and 0.6 kbar (depth 2.1 km), respectively. The parental magma had a high oxygen fugacity and was produced in a volcanic arc setting related to subduction of the paleo-Pacific plate.  相似文献   

6.
The paper presents pioneering data on the composition, texture, and crystal structure of molybdenite from various types of molybdenum mineralization at the Bystrinsky Cu–Au–Fe porphyry–skarn deposit in the eastern Transbaikal region, Russia. The data were obtained using electron microprobe analysis (EMPA), laser ablation–inductively coupled plasma mass spectrometry (LA-ICP-MS), and high-resolution transmission electron microscopy (HRTEM). Molybdenite found at the deposit in skarn, sulfide-poor quartz veins, and quartz–feldspar alteration markedly differs in the concentrations of trace elements determined by their species in the mineral, as well as in its structural features. Molybdenite-2H from skarn associated with phyllosilicates occurs as ultrafine crystals with uniform shape and texture; no dislocations or inclusions were found but amorphous silica was. The molybdenite composition is highly contrasting in the content and distribution of both structure-related (Re, W, and Se) and other (Mn, Co, Ni, Cu, Zn, As, Ag, Cd, Sb, Te, Ag, Pd, Au, Hg, Pb, and Bi) metals. In the sulfide-poor quartz veins, highly structurally heterogeneous (2H + 3R) molybdenite microcrystals with abundant defects (dislocations and volumetrically distributed inclusions) are associated with illite, goethite, and barite. Some single crystals are unique three-phase (2H + 3R polytypes + amorphous MoS2). The mineral has a low concentration of all trace elements, which are uniformly distributed. However, individual domains with uniquely high Pd, Te, Ni, Hg, and W concentrations caused by mineral inclusions are found in some grains. Molybdenite from quartz–feldspar alteration is characterized by low concentrations of all trace elements except for Re and Se, which enrich some domains of the grains. Our data indicate that the compositional and structural heterogeneity of molybdenite from the Bystrinsky deposit are its crucial features, which obviously correlate with the types of Mo mineralization.  相似文献   

7.
<正>Objective Thallium has been used as an indicator element in geochemical exploration of searching for hydrothermal gold deposits.However,the T1 minerals and mineralization are rare in nature.Lorandite TlAsS_2,a relatively uncommon mineral,has been dominantly discovered in some Carlin gold deposits,and minor SbHg,U and Pb-Zn-Ag deposits.It is of a hydrothermal origin and was typically formed at relatively low temperatures.The relationships between these deposits containing lorandite and intrusions remain a highly  相似文献   

8.
9.
10.
Given that the Duobuza deposit was the first porphyry Cu–Au deposit discovered in central Tibet, the mineralization and mineralized porphyry in this area have been the focus of intensive research, yet the overall porphyry sequence associated with the deposit remains poorly understood. New geological mapping, logging, and sampling of an early granodiorite porphyry, an inter-mineralization porphyry, and a late-mineralization diorite porphyry were complemented by LA–ICP–MS zircon dating, whole-rock geochemical and Sr–Nd isotopic analyses, and in situ Hf isotopic analyses for both inter- and late-mineralization porphyry intrusions. All of the porphyry intrusions are high-K and calc-alkaline, and were emplaced at ca. 120 Ma. The geochemistry of these intrusions is indicative of arc magmatism, as all three porphyry phases are enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. These similar characteristics of the intrusions, when combined with the relatively high (87Sr/86Sr)i, negative εNd(t), and positive εHf(t) values, suggest that the magmas that formed the porphyries were derived from a common source region and shared a single magma chamber. The magmas were generated by the mixing of upwelling metasomatized mantle-wedge-derived mafic magmas and magmas generated by partial melting of amphibolite within the lower crust.The inter-mineralization porphyry has the lowest εNd(t) and highest (87Sr/86Sr)i values, suggesting that a large amount of lower-crust-derived material was incorporated into the melt and that metals such as Cu and Au from the enriched lower crust were scavenged by the parental magma. The relative mafic late-mineralization diorite porphyry phase was formed by the residual magma in the magma chamber mixing with upwelling mafic melt derived from metasomatized mantle. The magmatic–hydrothermal evolution of the magma in the chamber released ore-forming fluid that was transported mainly by the inter-mineralization porphyry phase during the mineralization stage, which ultimately formed the Duobuza porphyry Cu–Au deposit.These porphyritic intrusions of the Duobuza deposit have high Mg# and low (La/Yb)N values, and show some high LILE/HFSE ratios, indicating the magma source was enriched by interaction with slab-derived fluids. Combined with age constraints on the regional tectonic evolution, these dating and geochemical results suggest that the Duobuza porphyry Cu–Au deposit formed in a subduction setting during the final stages of the northward subduction of the Neo-Tethyan Ocean.  相似文献   

11.
For the first time, fluid-melt inclusions are found in fluorite of the Huanggangliang skarn iron-tin deposit (HSID). The fluorite was formed in the main stage of mineralization, named the hydro-skarnization stage. The inclusions contain various components such as Fe, Mg and Cr from deep sources. The melts of primary inclusions are mainly Ca- and F-rich and those of secondary inclusions tend to become Si-rich. During this evolution process, the melts and iron daughter minerals decreased and even vanished. These facts reveal that the evolution of the primary mineralizing fluids and the differentiation of the fluids and melts are the main factors leading to the deposition of Fe, Sn and other elements. This discovery confirms the magmatic genesis of the HSID and has filled in the gaps in the research of magmatogenic skarn deposits and furnished new methods for such research. Furthermore, it has enlarged the scope of the research on fluid inclusions.  相似文献   

12.
Doklady Earth Sciences - It is shown that the giant Sikhote-Alin and Pamir deposits of boron are associated with fragments of the boron-bearing evaporite strata of paleoceanic atolls in the...  相似文献   

13.
14.
The Tongshan copper deposit at Guichi can be considered as a skarn-type copper deposit. Multi-stage carbonatization was well developed in the skarn zone and copper-bearing orebodies. Mineralogy, mineral chemistry and stable isotope data allow it to be divided into five stages: (1) carbonatization of single calcite crystals in the skarn stage; (2) calcite carbonatization in the oxide stage; (3) carbonatization in the early sulfide stage; (4) carbonatization in the late sulfide stage; and (5) carbonatization in the post-sulfide stage. Carbonatization in the early sulfide stage is, among other things, closely related to copper mineralization and is one of the alteration indicators of copper mineralization of this type. C. O, Rb and Sr isotopic studies indicate that the calcites of skarn and oxide stages were formed from hydrothermal solutions predominated by magmatic water, and those of sulfide stage were formed from hydrothermal solutions mainly involving heated meteoric water. The former was formed in the environment wherefO 2 (fO 2 < 10−33 and 10−33< fO2>10−36)(pH = 7–8) is high as compared with the latter (10−35< fO2< 10−38; pH = 5–7).  相似文献   

15.
16.
17.
The Duolong area is the most important part of the Western Bangong-Nujiang Suture Zone porphyry Cu(Au) metallogenic belt, in Tibet, China. Here new detailed data are presented from LAICP-MS zircon U-Pb, whole-rock geochemical, and in-situ zircon Hf isotope analyses for igneous rocks in the large Naruo deposit(2.51 Mt of Cu and 82 t of Au) which is located ~2 km NE of the Duolong(Duobuza and Bolong) super-large gold-rich porphyry copper deposit. We integrated our results with previous research of other porphyry deposits in the Duolong area and have identified the timing, geodynamic setting, and petrogenesis of the mineralization-associated magmatic events. Based on the measurements, the Duolong area porphyry Cu(Au) deposit formations are associated with Early Cretaceous intermediate-felsic magmatism, which is consistent with U-Pb zircon ages of 120 Ma. All the main intrusive rocks in the ore-concentrated area have similar lithogeochemical characteristics; they show a relative enrichment in both light rare earth elements(LREEs) and large-ion lithophile elements(LILEs: Rb, Ba, K, etc.) and relative depletion in both heavy rare earth elements(HREEs) and high field strength elements(HFSEs: Nb, Ta, Zr, Hf, etc.). Moreover, the granite porphyry shows positive εHf(t) values between 1.38–7.37 suggesting that magmas were potentially derived from the partial melting of a depleted mantle wedge that had been metasomatized by subducted slab-derived fluids or melts. This paper points out that the formation of the porphyry-epithermal Cu(Au) deposit in the Duolong area was dominated by northward subduction of the Bangongco Tethys Plate beneath the Qiangtang block in the Early Cretaceous(124–114 Ma), when the subducted oceanic crust reached 50–70 km underground and generated different degrees of phase transformation, which lead to a melt produced by dehydration of amphibole minerals, a metasomatized mantle wedge, and induced mantle partial melting that produced the magma. Those deposits occurred in a continental arc tectonic setting, which is similar to the continental margin arc environment of the ocean-continent subduction setting of the Andes metallogenic belt in South America.  相似文献   

18.
Geology of Ore Deposits - The article describes magnetite–sulfide assemblages of minerals containing native gold and tellurides in the Pb–Zn–Fe ores of the Aktash skarn deposit in...  相似文献   

19.
Four metallogenic epochs occurred in different tectonic environments during theevolution of the Northern Qilian metallogenic province through the geological time. The Mid-dle Proterozoic metallogenic epoch witnessed the tectonic environment of crustal breakupcaused by mantle diapirism, in which ultramafic-mafic rocks were intruded along beep faultbelts and the superlarge Jinchuan magmatic Cu-Ni sulphide deposit was formed. In theMiddle-Late Proterozoic metallogenic epoch the crust was further broken to form anintracontinental rift, in which the Chenjiamiao style massive Cu-Fe sulphide deposits hosted bybasic volcanic tuff were formed in the lower volcano-sedimentary sequence, while the largesedex type Jingtieshan style Fe-Cu deposits were formed within the upper abyssal carbon-richargillaceous sedimentary sequence. The Early Palaeozoic saw the aulacogen environment, with-in which the Baiyinchang style superlarge massive base and precious metal sulphide depositshosted by quartz keratophyric tuff were formed in the Middle-Late Cambrian rifted island arcand the massive Cu-Zn sulphide deposits and magmatic chromite deposits associated with theophiolite suite were formed in the Early-Middle Ordovician, and the Honggou style massiveCu-Fe sulphide deposits hosted by spilite were formed in the Late Ordovician back-arc basinenvironment. In the Late Palaeozoic-Meso-Cenozoic, the metallogenic province went into anintracontinental orogenic stage characterized by compressive tectonic environment, in whichthere occurred carbonate-quartz vein type and tectono-alteration gold deposits associated withductile-shear structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号