首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The vast expanse of Mesozoic igneous rocks in Hong Kong contain important geological records of late Mesozoic magmatic events and tectonic processes from the coastal region of Southeast China. Of these,the Ping Chau Formation in the northwestern New Territories is the youngest known stratum. We perform a detailed study of the volcanic rocks of the Ping Chau Formation utilizing zircon U-Pb dating,with major and trace elements geochemistry. LA-ICP-MS zircon U-Pb data reveal Early Cretaceous age from two volcanic rock samples, with zircon crystallization from magmas at 140.3 ± 0.8 Ma and 139.3 ± 0.9 Ma,respectively. These rocks have high contents of total alkalis(Na_2O + K_2O = 5.58-9.45 wt.%), high-field-strength elements and light rare earth elements, conspicuous negative Eu anomalies, and depletions in Nb, Ta, Ti, Sr, Ba and P. Using this data, in combination with previous studies on the late Mesozoic volcanic belt in Southeast China, we propose that the volcanic rocks of the Ping Chau Formation probably originated from deep melting of the crust in a back-arc extensional setting induced by the subduction of the paleo-Pacific Plate. This formation represents the final stages of Early Cretaceous volcanic activity in Hong Kong, as associated with large-scale lithospheric extension, thinning and magmatism. Our results provide new information that can be used in evaluating the significance of Early Cretaceous volcanism and tectonics in Southeast China.  相似文献   

2.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing‘anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part (or collision zone). The determination of the eruption age of the volcanics of the Zhangjiakou Formation definitely constrains the switch period, which began in the Indosinian and finished in the Yanshanian, that is, 140-135 Ma. The switch is concretely the change from the approximate E-W Paleo-Asian tectonic system to the NE to NNE Pacific system, and the period is also the apex of a continent-continent collision and orogenesis of subduction, being consumed and eventually disappearing of the Paleo-Pacific ancient continent, and all the processes commenced in the Indosinian. While the following post-orogenic large-scale eruption in the Early Cretaceous marks the final completeness of the Paleo-Pacific structure dynamics system.  相似文献   

3.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not L  相似文献   

4.
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not L  相似文献   

5.
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area.Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China.Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning,a number of researchers have focused on Mesozoic volcanic events.The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb.The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age,the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma,the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma,respectively. Combined with the data of recent publication on volcanic rocks ages;the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods:119 Ma,113 Ma and 103 Ma.The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province,establishing Mesozoic volcanic event sequence,discussing geological tectonic background,and surveying the relation between noble metals to the Cretaceous volcanic rocks,but also offers important information of Mesozoic volcanism in northeastern China.  相似文献   

6.
Mesozoic volcanic rocks in southeastern Jilin Province are an important component of the huge Mesozoic volcanic belt in the northeastern area. Study of the age of their formation is of great significance to recognize Mesozoic volcanic rule in northeastern China. Along with the research of rare Mesozoic biota and extensive Mesozoic mineralization in western Liaoning, a number of researchers have focused on Mesozoic volcanic events. The authors studied the ages of the Cretaceous volcanic rocks in southeastern Jilin Province using single Zircon U-Pb. The result shows that the Sankeyushu Formation volcanic rocks in the Tonghua area are 119.2 Ma in age, the Yingcheng Formation in the Jiutai area 113.4±3.1 Ma, the Jinjiatun Formation in Pinggang Town of Liaoyuan City and the Wufeng volcanic rocks in the Yanji area 103.2±4.7 Ma and 103.6±1 Ma, respectively. Combined with the data of recent publication on volcanic rocks ages; the Cretaceous volcanic events in southeastern Jilin Province can be tentatively subdivided into three eruption periods: 119 Ma, 113 Ma and 103 Ma. The result not only provides important chronology data for subdividing Mesozoic strata in southeastern Jilin Province, establishing Mesozoic volcanic event sequence, discussing geological tectonic background, and surveying the relation between noble metals to the Cretaceous volcanic rocks, but also offers important information of Mesozoic volcanism in northeastern China.  相似文献   

7.
Over the area between Beipiao City and Yixian County, Hebei Province, there outcrop trachyte-trachyandesite volcanic rocks of the Upper Jurassic Zhangjiakou Formation and sedimentary series of the Dabeigou Formation. The ~(40)Ar-~(39)Ar datings of the volcanic rocks give an age of 143. 9 Ma. The most recently defined basalt member in the lower part of the Cretaceous Yixian Formation was dated at 137-129 Ma, while the andesite member in the upper part at 126-120 Ma. It is ascertained that  相似文献   

8.
A great deal of early-to-mid Early Cretaceous magmatic activities have been recorded in the Zhalantun area of Inner Mongolia,while the late Early to Late Cretaceous magmatic rocks have been barely reported(Guo et al.,2018;Zhang Xiangxin et al.,2017).At present,only a few Late Cretaceous magmatic activities were reported in the Arongqi area,such as volcanic rocks of the Gushanzhen Formation.However,the Gushanzhen Formation lacks accurate isotopic age,and contemporaneous intrusive rocks has not been reported yet.In this work,we collected the volcanic rocks from the Gushanzhen Formation and contemporaneous intrusive rocks in the Zhanlantun and nearby,and aim to figure out the formation ages of volcanic rocks of the Gushanzhen Formation and accompanied intrusive rocks by analyzing zircon U-Pb isotopes(Fig.1).  相似文献   

9.
Early Cretaceous Tectonics and Evolution of the Tibetan Plateau   总被引:1,自引:1,他引:0  
Selected geological data on Early Cretaceous strata, structures, magmatic plutons and volcanic rocks from the Kunlun to Himalaya Mountains reveal a new view of the Early Cretaceous paleo-tectonics and the related geodynamic movement of the Tibetan Plateau. Two major paleo-oceans, the Mid-Tethys Ocean between the Qiangtang and Lhasa blocks, and the Neo-Tethys Ocean between the Lhasa and Himalayan blocks, existed in the Tibetan region in the Early Cretaceous. The Himalayan Marginal and South Lhasa Seas formed in the southern and northern margins of the Neo-Tethys Ocean, the Central Tibet Sea and the Qiangtang Marginal Sea formed in the southern and northern margins of the Mid-Tethys Ocean, respectively. An arm of the sea extended into the southwestern Tarim basin in the Early Cretaceous. Early Cretaceous intensive thrusting, magmatic emplacement and volcanic eruptions occurred in the central and northern Lhasa Block, while strike-slip formed along the Hoh-Xil and South Kunlun Faults in the northern Tibetan region. Early Cretaceous tectonics together with magmatic K2O geochemistry indicate an Early Cretaceous southward subduction of the Mid-Tethys Oceanic Plate along the Bangoin-Nujiang Suture which was thrust ~87 km southward during the Late Cretaceous-Early Cenozoic. No intensive thrust and magmatic emplacement occurred in the Early Cretaceous in the Himalayan and southern Lhasa Blocks, indicating that the spreading Neo-Tethys Oceanic Plate had not been subducted in the Early Cretaceous. To the north, terrestrial basins of red-beds formed in the Hoh-Xil, Kunlun, Qilian and the northeastern Tarim blocks in Early Cretaceous, and the Qiangtang Marginal Sea disappeared after the Qiangtang Block uplifted in the late Early Cretaceous.  相似文献   

10.
The Port Island Formation(PIF), a typical Cretaceous red bed in Hong Kong, is dominated by non-fossiliferous, reddish clastic rocks, making it difficult to determine the sedimentary age of PIF precisely. Previous studies assigned the PIF to Late Cretaceous provisionally only on the basis of its stratigraphic sequence and lithology. This study identified a tuffite interlayer in the PIF and a zircon UPb age of 128.2±2.7 Ma by LA-ICP-MS method was obtained. It's the first time to date the depositional age of the PIF with a reliable chronological constraint. With the support of stratigraphic evidence, we concluded that the geological age of PIF should be Early Cretaceous rather than Late Cretaceous. Based on the volcanic history of Hong Kong and Southeast China and the distribution of the PIF in Mirs Bay, it is believed that there was no volcanic activity in Hong Kong in ca. 128 Ma. The tuffite interlayer discovered in PIF was formed by the deposition of volcanic ash, which might originate from remote region outside Hong Kong, in an aquatic environment on Port Island. The identification of the tuffite interlayer, as the response to a volcanic event, has great significance not only to the studies of establishment and regional correlation of the strata system and the geological evolution in Hong Kong,but also to the study of volcanic activities in Southeast China.  相似文献   

11.
This article presents Sm-Nd and geochemical data on fine-grained sediments of the northern margin from the Yangtze block, China, to understand the variations of Nd isotopic compositions and crustal evolution history in this area. The results are as follows: (1) Nd isotopic compositions for clastic sedimentary rocks of the Middle-Late Proterozoic have relatively positive Nd(t) values ( 2.72 to 0.69), with Nd model ages from 1.38 Ga to 1.55 Ga, corresponding to the contemporaneous volcanic rocks from the Xixiang (西乡) Group. This indicates that the arc-related materials from Middle-Late Proterozoic dominate the provenances of the Middle-Late Proterozoic periods. (2) The gradual decrease in εNd(t) during the Cambrian-Carboniferous periods is likely to reflect the progressively increasing proportion of erosion materials from the Foping (佛坪) and Qinling (秦岭) complexes, corresponding to a gradually decreasing trend in the La/Th ratios. (3) A prominent increase in the εNd(t) value of the Late Permian strata probably reflects the significant incorporation of the mantle-derived materials. The trace element data are compared with data of the Emeishan (峨嵋山) flood basalts. These data indicate that the volcanic dust has been added to the Late Permian strata during the Late Permian, represented by periods of extremely high Emeishan flood basalt activity in the south-eastern margin of the Yangtze block.  相似文献   

12.
The reports that relate to the biomarker's fate and characteristics of the modern soil in the karst area are very lacking. By using gas chromatography-mass spectrometry (GC-MS), a series of biomarkers were identified from the soils collected over Heshang cave (和尚洞) in Qingjiang (清江), Hubei (湖北) Province. The distribution of n-alkanes is mainly from C2s to C33 in carbon number, with a maximum at C31. They have a strong odd-over-even carbon number predominance. These characteristics represent an input mainly from higher plants. The lipid parameters, including CPIh (carbon preference index), Rb/t(ratio of lower- to higher-molecular-weight homologues) and ACL (average chain length), show comparable trends with depth, probably reflecting vegetation change and microbial degradation. Series of monomethylalkanes and diploptene are present in the extractable organic matter; they might be derived from soil microbes, cyanobacteria in particular.  相似文献   

13.
To analyze the genesis of Sr isotopes in groundwater of Hebei plain, time-accumulative effect of 87Sr/86Sr ratio was studied. It is shown that 87Sr/86Sr ratio increases with the increasing age and depth of groundwater and has a positive correlation to 4Heexc and a negative correlation to δ18O and δD. The groundwater is divided into three groups to discuss the relation between 87Sr/86Sr ratio and Sr2 content: ① moderate Sr2 content and higher 87Sr/86Sr ratio (water I); ② lower Sr2 content and higher 87Sr/86Sr ratio (water II); and ③ higher Sr2 content and lower 87Sr/86Sr ratio (water III), that is hot water. On the basis of integrated analysis, it was considered that ① the radiogenic Sr in the Quaternary groundwater (Q4-Q1) originates from weathering of silicate rich in Na and Rb, mainly from plagioclase; ② the radiogenic Sr of hot water in Huanghua port is attributed to carbonate disso- lution, with lower 87Sr/86Sr ratio and higher Sr/Na ratio; ③ the recharge area is laterally recharged by the groundwater flowing through igneous and metamorphic rocks, with moderate 87Sr/86Sr ratio. How- ever, the formation mechanism of Sr isotopes in Tertiary groundwater needs further studies.  相似文献   

14.
INTRODUCTIONThe Sanmenxia area is located at the SE marginof the Loess Plateau,where a thick-layered loess de-posit developed(Fig.1).Previous research has al-ready been carried out on some loess stratigraphy inthe area(Teng,1988;Xie and Jiang,1987;Yue,1985,1984),which concentrated on petrostratigra-phy and magnetostratigraphy.Further environmentalinvestigation has not yet been pursued.After the ge-ological survey(Zheng et al.,1992;An et al.,1989;Ding and Liu,1989),more integrated str…  相似文献   

15.
Eighteen silicic volcanic rocks of the Warrawoona Group and ten associated plutonic rocks from the Pilbara Block, Western Australia, have been chosen for geochemical and isotopic studies. Silicic volcanics of the UNSB (Upper member of North Star Basalt) are dated at 3.56—3.57
, by both the Rb-Sr and the Sm-Nd methods. The respective 1 (initial isotopic composition) values are 0.7005 ± 5 (Sr) and 0.50810 ± 39 (Nd). This age is consistent with the stratigraphic interpretation that the TalgaTalga Subgroup, in which the North Star Basalt occupies the lowermost position, is overlain by the Duffer Formation, whose age was earlier established at 3.45
by the zircon U-Pb method. The new Rb-Sr data on six silicic lava samples from the Duffer Formation yield an isochron of 3.23 ± 0.28 (2v). Though imprecise, this age agrees with the zircon age within error limits. Rb-Sr ages of 2.3–2.4.
obtained for the ‘Panorama’ rocks and the Wyman Formation do not correspond to their initial eruption ages. Chemical arguments suggest that these ages represent the time of metasomatism associated with the widespread thermal event in this region about 2.3–2.4
ago.Geochemically, most of these analyzed rocks (volcanic and plutonic) are of tonalite-trondhjemitegranodiorite (TTG) composition, a typical feature found in many other Archean terrains. They generally show fractionated REE patterns, except the Panorama Formation rocks. Furthermore, the Wyman Formation rhyolites and the post-tectonic adamellites show significant negative Eu anomalies, suggesting a similar mode of magma generation and a probable genetic link. Theoretical considerations suggest that most of these TTG rocks could have been generated by partial melting of amphibolitic or basaltic sources, followed by fractional crystallization.Although the Archean granitic gneisses often possess mantle-like Isr values, the trace element data indicate that they could not have been derived by direct melting of upper mantle materials. The immediate tectonic implication is that in any Archean terrain, the formation of Na-rich continental crust of TTG suite must be preceded by the presence of basaltic crust. The occurrence of this basaltic crust is a matter of controversy. Such crust might have been totally destroyed by repeated melting processes, or its remnants are now represented by some of the mafic-ultramafic enclaves within the tonalite-trondhjemite batholiths.  相似文献   

16.
  1. Download : Download high-res image (489KB)
  2. Download : Download full-size image
  相似文献   

17.
A large amount of deep oil has been discovered in the Tazhong Uplift, Tarim Basin whereas the oil source is still controversial. An integrated geochemical approach was utilized to unravel the characteristics, origin and alteration of the deep oils. This study showed that the Lower Cambrian oil from well ZS1C (
1x) was featured by small or trace amounts of biomarkers, unusually high concentration of dibenzothiophenes (DBTs), high δ34S of DBTs and high δ13C value of n-alkanes. These suggest a close genetic relationship with the Cambrian source rocks and TSR alteration. On the contrary, the Middle Cambrian oils from well ZS1 (
2a) were characterized by low δ13C of n-alkanes and relatively high δ34S of individual sulfur compounds and a general “V” shape of steranes, indicating a good genetic affinity with the Middle–Upper Ordovician source rocks. The middle Cambrian salt rock separating the oils was suggested to be one of the factors responsible for the differentiation. It was suggested that most of the deep oils in the Tazhong Uplift were mixed source based on biomarkers and carbon isotope, which contain TSR altered oil in varied degree. The percentage of the oils contributed by the Cambrian–Lower Ordovician was in the range of 19–100% (average 57%) controlled by several geological and geochemical events. Significant variations in the δ34S values for individual compounds in the oils were observed suggesting a combination of different extent of TSR and thermal maturation alterations. The unusually high DBTs concentrations in the Tazhong-4 oilfield suggested as a result of mixing with the ZS1C oil (
1x) and Lower Ordovician oils based on δ34S values of DBT. This study will enhance our understanding of both deep and shallow oil sources in the Tazhong Uplift and clarify the formation mechanisms of the unusually high DBTs oils in the region.  相似文献   

18.
Apatite fission track (AFT) thermochronology of seven samples from the Xiaonanchuan (小南川) pluton in the Kunlun (昆仑) pass area was carried out, for the purpose of determining the timing of cooling and the relation between the exhumation and the morphotectonic processes. The AFT ages yield low denudation rates of 0. 020--0. 035 mm/a during the late Miocene, which correspond to a stable geomorphic and weak tectonic uplifting environment. The low denudation rates can be considered as the approximate tectonic uplifting rates. The AFT geochronology shows puroxysmully rapid cooling since the Pliocene and an apparent material unroofing of more than 3 km in the Xiaonanchuan area. This was not the result of simple denudation. The rapid cooling was coupled with the intensive orogeny since the Pliocene, which was driven by tectonic uplifting. The accelerated relief building was accompanied by a series of faulting, which caused the basin and the valley formation and sinking. The space pattern of the AFT ages also shows differential uplifting, which decreases northwardly. This trend is supported by the regional AFT data, which indicate that the exhumation decreases northwardly in eastern Kunlun. This trend also exists in cast-west orientation from the western Kunlun range to the eastern. The uplif- ting trend is also supported by gcomorphic characteristics including the elevation and the relief differences well as the distribution of the Late Cenozoic volcanism.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987112000874   总被引:2,自引:1,他引:2  
<正>1.Introduction The continental crust,covering nearly a third of the Earth's surface,is dominantly made up of granites and granodiorites(Rudnick and Gao, 2003).Although the vast majority of these granitoids are amphiboleand /or biotite-bearing,orthopyroxene-bearing granitoids form a minor but important component of the lower continental crust in many high-grade terrains(e.g.,Bohlender et al.,1992;Kilpatrick and Ellis,1992;Sheraton et al.,1992;Berger et al.,1995;Zhou et al., 1995;Peucat et al.,1996;Duchesne and Wilmart,1997;Hughes et al.,1997;Prame.1997;Frost et al.,2000;Janasi,2002;Mendes  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号