首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In 1989, in a hydrological research programme within a deacidification project in the Gårdsjön area in southwest Sweden, flow paths and residence times of soil water and groundwater in microcatchments were examined to support the interpretation of the hydrochemical changes. Saturated hydraulic conductivity and soil water retention were analysed on more than 100 cylinder samples. The catchments have shallow sandy-silty till soil with a mean depth in the main catchment of 43 cm. Porosity of the mineral soil in the main catchment was high and ranged from 38 to 85%. The samples from the B-horizon had generally higher porosity. Porosity and the content of organic matter were correlated. The soil water retention was relatively high at all tensions, likely owing to the high content of organic matter. Dissolved organic substances were most probably transported from the shallow soil on the steep sides of the catchment down to the valley where it precipitated. The high porosities could be a consequence of long-term weathering, provided that the organic substances present have increased the leaching of the weathering products. Measured values of saturated hydraulic conductivity were close to log-normally distributed with a mean for all samples of 3 × 10−5 m s−1. There was a significant increase in conductivity toward the ground surface with the mean conductivity of the samples in the uppermost 10 cm of the mineral soil of 4 × 10−5 m s−1, which was about 13 times higher than the conductivity of 3 × 10−6 m s−1 at 1 m depth. From the relationship between runoff at the catchment outlet and groundwater levels, the conductivity was estimated to be 15–200 times higher in the upper soil layer than in the deeper ones. In one profile, 44–64% of the yearly lateral flow was estimated to occur above 30 cm depth. The conductivity was correlated with the content of drainable water, which indicated the importance of the largest pores for the saturated hydraulic conductivity.  相似文献   

2.
In 1995–1998, Han 11 km terrestrial surge of Kuannersuit Glacier, an outlet glacier of the largest ice cap on Disko Island, West Greenland, affected the catchment dramatically. In order to estimate solute fluxes and provenances, bulk meltwaters were sampled at the main subglacial outlet during the initial part of the quiescent phase. The hydrochemistry is significantly influenced by a subglacial basaltic weathering regime with absence of carbonate minerals. The results show that marine and aerosol derived solutes have minimal contribution to the total ion content, whereas sequestration of atmospheric CO2 associated with carbonation of Ca-rich feldspar and reactive volcanic glass is more dominant than previously reported from glacierized catchments. Application of a sampling strategy dividing water samples into four groups to determine the content of dissolved HCO3 and CO32− shows that the cationic equivalent weathering rate range is 683–860 Σmeq+ m−2 a−1 and solute flux ranges between 76 and 98 t km−2 a−1. The crustal denudation rate is estimated to 26 t km−2 a−1, and the transient CO2 drawdown amounts to 8500–13700 kg C km−2 a−1.  相似文献   

3.
The water-table region (upper 50 cm of the saturated zone) of a 25 m deep phreatic sandstone aquifer, lying under fields irrigated with sewage effluents for up to 22 yrs, was monitored in 1971 and 1984. Average concentrations of NO3, Cl and SO2−4 of up to 225, 307 and 155 mg l−1, respectively, were detected in the upper 50 cm of the saturated region in two research wells in 1984. These concentrations, which are related to effluent and fertilizer input to groundwater, were two to four times higher than those found deep (37–55 m) below the water table in nearby (1000 m distant) production wells. Nitrate data and the estimated transit time through the unsaturated zone (2 m yr−1) support the model suggesting that the major source of nitrate pollution in the past should be related to the oxidation of soil organic matter. The SO2−4/Cl ratio is found to be a useful indicator for the arrival of SO2−4-fertilizers at the groundwater interface. The observations presented in this paper question the suitability of plans for using effluents as a water source for agriculture in regions which are the replenishment areas of phreatic aquifers.  相似文献   

4.
Variations in some physical, chemical, and nutrient conditions were investigated at Turkwel Gorge Reservoir and its inflowing river, Suam between 1994 and 1995. Seasonal changes in inflow volume had the greatest impact on the reservoir and river conditions investigated. A wide fluctuation in inflow volume combined with a regulated outflow independent of season resulted in a draw down of over 10 m in each year. Flood inflows during the wet season resulted in the lowest values of Secchi depth (range, 0.09–2.16 m), electrical conductivity (EC, range = 140–200 mS cm−1) and total alkalinity (TA, range = 75–111 mg l−1) while the highest values were measured during the dry season. A functional relation between EC and TA (TA = 0.529 mg l−1, EC: R2 = 0.876) suggests a predominance of carbonates among the anions. Vertical profiles of temperature and dissolved oxygen (DO) revealed that the reservoir is monomictic with a wide variation in the depth of the daily mixed layer. High values of pH (range = 6.7–8.9) and DO (range = 4.9–9.2 mg l−1) were associated with periods of peak phytoplankton photosynthesis while the lowest values followed reservoir mixing. Peak total nitrogen (TN, range = 119–526 μg l−1) and total phosphorus (TP, range = 8.9–71.6 μg l−1) levels during the wet season resulted from increased river loading. Values of dissolved reactive silica (DRS, range = 0.41–9.77 mg l−1) showed a wet season decline which was related to diatom depletion during the wet season. Annual reservoir areal loading rates of 27.38, 10.90 and 408.5 mg m−2 were computed for TN, TP and DRS respectively based on estimates of inflowing river loads in 1994.

At the inflowing river Suam, low levels of EC (range = 107–210 μS cm−1) and TA (range = 62–125 mg l−1) occurred during the wet season while the highest levels occurred shortly before the river dried up. The first flood water at the resumption of river inflow in March was characterized by very low levels of DO (range = 1.8–8.2 mg l−1) and high levels of TN (range = 205–3354 μg l−1) and TP (102–1259 μg l−1). River pII (6.9–7.7) and DRs (range = 9.01–19.93 mg l−1) varied irregularly throughout the year.  相似文献   


5.
Results are presented of laboratory resonant column and cyclic triaxial tests on specimens of two compacted soils (a sandy–silty clay and a sand–gravel mixture), planned to be used in the core and the shells, respectively, of a proposed earthfill dam. The values of low-amplitude shear modulus of the clayey material were found to increase with increasing confining pressure and decreasing water content, with deviations of ±20% from the predictions of the “Hardin equation”. On the other hand, the low-amplitude damping ratio was found to be at least four times higher than the values corresponding to natural undisturbed cohesive soils. The proposed G/G0γc curve for the compacted cohesive soil was found to be independent of confining pressure and small variations of the water content on either side of the optimum value and showed a remarkable agreement with recently published similar curves for natural cohesive soils. For the case of the sand–gravel mixture, normalized G/G0γc and Dγc curves are proposed, based on recently published results for gravelly soils and the limited data of the present study. The liquefaction resistance of the saturated sand–gravel mixture was found to be strongly dependent on its relative density, especially for high values of cyclic stress ratio. A relative density of at least 55% was found to be necessary to assure safety against earthquake-induced liquefaction of the material. The results presented herein may be used (directly or as guide) in the seismic analysis of (new or existing) earth dams constructed from similar soil materials and in addition they provide insight into the dynamic behavior of compacted soils.  相似文献   

6.
Different opinions exist regarding the specific effect of Mg on soil physical and chemical properties. We hypothesized that Mg2+, compared with Ca2+, reduces saturated hydraulic conductivity (Ks) via promoting clay swelling, disaggregation, and clay dispersion. Two soils (mixed, mesic Typic Hapludalfs) in packed soil columns were leached with either Ca- or Mg-containing solutions at the successive concentrations of 250, 10, 2, 0.5, and 0 mM. Critical flocculation concentration (CFC) in either Ca or Mg systems was determined with flocculation series tests. Aggregate stability and mean weight diameter (MWD) were assessed by wet-sieving. The CFCs were higher in Mg than in Ca for both soils, indicating that Mg is more dispersive than Ca. The MWDs measured using 1–2 mm aggregates of both soils were significantly larger for Ca-soils than for Mg-soils (P=0.05). The Ksr (normalized with initial Ks) started to decline at higher concentrations for Mg than for Ca, and the reduction was much greater in Mg than in Ca above 0.5 mM. The Ksr and percent transmittance (inversely related to turbidity) of leachate at a given eluted pore volume following ‘steady state’ were higher in Ca than in Mg for both soils (P=0.1), indicating lower permeability and more clay dispersion with the Mg treatment. Swelling and disaggregation, which reduced large pores, appeared to be the dominant process causing the rapid initial decline of Ksr. Clay dispersion and subsequent pore plugging became progressively important when electrolyte concentration was reduced to below CFCs.  相似文献   

7.
In sparsely cropped farming systems in semi-arid tropics, rainfall partitioning can be complex due to various interactions between vertical and horizontal water flows, both in the atmosphere and in the soil. Despite this, quantifying the seasonal rainfall partitioning is essential, in order to identify options for increased yields. Results are presented on water flow components, based on field measurements and water balance modelling, for three years (1994–96) in a farmer's field cultivated with pearl millet [Pennisetum glaucum (L.) Br.] in the Sahel (Niger). Water balance modelling was carried out for three common infiltration categories: runoff producing surfaces, surfaces receiving inflow of runon water from upstream zones, and a reference surface with zero runoff and runon. Runoff was calculated to 25%–30% of annual rainfall (which ranged from 488 to 596 mm), from crust observations, rainfall, soil wetness data, and infiltration estimates. Inflow of runon was estimated from field observations to 8%–18% of annual rainfall. The parameters in the functions for soil surface and canopy resistances were calibrated with field measurements of soil evaporation, stomatal conductance and leaf area. The model estimates of soil water contents, which were validated against neutron probe measurements, showed a reasonable agreement with observed data, with a root mean square error (RMSE) of approximately 0.02 m3 m−3 for 0–160 cm soil depth. Estimated productive water flow as plant transpiration was low, amounting to 4%–9% of the available water for the non-fertilised crop and 7%–24% for the fertilised crop. Soil evaporation accounted for 31%–50% of the available water, and showed a low variation for the observed range of leaf area (LAI <1 m2 m−2). Deep percolation was high, amounting to 200–330 mm for the non-crusted surfaces, which exceeded soil evaporation losses, for 1994–95 with relatively high annual rainfall (517–596 mm). Even a year with lower rainfall (488 mm) and a distinct dry spell during flowering (1996), resulted in an estimated deep percolation of 160 mm for the non-fertilised crop. The crop did not benefit from the additional inflow of runon water, which was partitioned between soil water storage and deep percolation. The only exception to this was the fertilised crop in 1996, where runon somewhat compensated for the limited rainfall and the higher water demand as a result of a larger leaf area than the non-fertilised crop. The effects of rainfall erraticness, resulting in episodic droughts, explain why a crop that uses such a small proportion of the available water, in an environment with substantial deep percolation, still suffers from water scarcity. Application of small levels of phosphorus and nitrogen roughly doubled yields, from 380 to 620 kg ha−1, and plant transpiration, from 33 to 78 mm. Evapotranspirational water use efficiency (WUEET) was low, 6500–8300 m3 ton−1 grain for non-fertilised crop, which is an effect of the low on-farm yields and high non-productive water losses. The estimated seasonal rainfall partitioning indicates the possibility of quantifying vertical water flows in on-farm environments in the Sahel, despite the presence of surface overland flow.  相似文献   

8.
Hydrobiogeochemical processes controlling stream water chemistry were examined in four small (<5 km2) catchments having contrasting bedrock lithologies in the western Sierra Nevada foothills of California. The Mediterranean climate with its cool/wet and hot/dry cycle produces strong seasonal patterns in hydrological, biological and geochemical processes. Stream water solutes fall into three general groups according to seasonal fluctuation in concentration: strong, rainy season minimum–dry season maximum (Cl, SO42−, base cations); weak, rainy season minimum–dry season maximum (Si); and rainy season maximum–dry season minimum (NO3 and K+). Solute dynamics in soil solutions and stream water suggest that mixing of drainage waters from bedrock and soil sources regulate stream water solute concentrations. Patterns are further altered by the leaching of solutes accumulated in the soil over the summer period of desiccation and the temporal discoupling of nutrient cycles that occurs due to differences in the timing between vegetation growth (late spring) and leaching (early winter). Solute concentrations are remarkably similar between watersheds with varying bedrock types, with the exception of nitrate, sulfate and bicarbonate. Three watersheds have nitrogen-bearing metasedimentary bedrock that contributes to elevated nitrate concentrations in stream waters. Watersheds whose bedrock includes mineralized veins of sulfide and carbonate minerals similarly have greater sulfate and bicarbonate concentrations in stream water. Hydrobiogeochemical processes are highly dynamic at the seasonal and storm-event temporal scales and spatially complex at the watershed scale making management of stream water chemical composition, such as nitrate concentrations, very challenging.  相似文献   

9.
The barge Florida spilled No. 2 fuel oil into Buzzards Bay, Massachusetts on 29 September 1969. Sediments from five of the original stations were sampled in August 1989 and analysed for fuel oil hydrocarbons. Two subtidal and one intertidal marsh station showed no evidence of fuel oil. One subtidal mud core had traces of biodegraded fuel oil at 10–15 cm. One marsh core contained 10−6 g g−1 dry wt of weathered and biodegraded fuel oil aromatic hydrocarbons and cycloalkanes at 5–10 cm with lesser concentrations at 0–5 and 10–15 cm. Although present in trace concentrations, these hydrocarbons appear to be slightly inducing cytochrome P4501A in marsh fish (Fundulus heteroclitus).  相似文献   

10.
Discharge of saline groundwater from Eucalyptus forests on a semi-arid floodplain was directly determined by first measuring transpiration rates from the forests, and then partitioning the transpiration flux into groundwater discharge and soil water depletion. This partitioning was achieved by identifying the source of the transpired water with naturally occurring stable isotopes of water. Transpiration rates were low, being about 0.3 mm day−1 from three E. largiflorens sites and up to 2 mm day−1 from an E. camaldulensis site. There was no significant variation in transpiration across seasons, indicating that transpiration was limited by environmental factors other than evaporative demand. Despite its salinity (electrical conductivities of 11–33 dS m−1), the groundwater was used by the forests at all sites and all times, and made up 100% of transpiration in more than half of the measurements, and 40–80% in the remainder. There was some consistency in water uptake patterns. E. camaldulensis tended to take up shallow soil water and groundwater simultaneously, as did trees at one of the E. largiflorens sites. At the driest sampling time, however, groundwater was the only source of water for trees at both of these sites. Trees at the remaining two E. largiflorens sites generally relied solely on the groundwater. The tree water source results indicate that groundwater discharge fluxes were between 40 and 100% of the transpiration fluxes at these sites. These groundwater discharge fluxes were small in terms of regional groundwater balances, but would be important in the salinisation of the soils. Additionally, uptake of water from the soil profile by the trees substantially increased groundwater discharge compared with discharge from the soils had they been bare of vegetation.  相似文献   

11.
Pesticides and herbicides including organochlorine compounds have had extensive current and past application by Queensland's intensive coastal agriculture industry as well as for a wide range of domestic, public health and agricultural purposes in urban areas. The persistent nature of these types of compounds together with possible continued illegal use of banned organochlorine compounds raises the potential for continued long-term chronic exposure to plants and animals of the Great Barrier Reef. Sediment and seagrass samples were collected from 16 intertidal and 25 subtidal sampling sites between Torres Strait and Townsville, near Mackay and Gladstone, and in Hervey and Moreton Bays in 1997 and 1998 and analysed for pesticide and herbicide residues. Low levels of atrazine (0.1–0.3 μg kg−1), diuron (0.2–10.1 μg kg−1), lindane (0.08–0.19 μg kg−1), dieldrin (0.05–0.37 μg kg−1), DDT (0.05–0.26 μg kg−1), and DDE (0.05–0.26 μg kg−1) were detected in sediments and/or seagrasses. Contaminants were mainly detected in samples collected along the high rainfall, tropical coast between Townsville and Port Douglas and in Moreton Bay. Of the contaminants detected, the herbicide diuron is of most concern as the concentrations detected have some potential to impact local seagrass communities.  相似文献   

12.
The effects of short-term flooding on soil water content and subsequent tree response were examined in a riparian Eucalyptus camaldulensis forest which was dissected by a series of shallow ephemeral channels, locally known as runners. Twelve isolated plots, each approximately 0.8 ha, were established in three blocks of four treatments. One of the blocks was underlain by a moist, sandy aquifer 2–4 m below the surface. The four treatments were (1) flooding each spring; (2) flooding each summer; (3) flooding each spring plus each summer; (4) control (zero flooding). Depth of water percolation after a summer flooding varied from 1.3 to over 6 m below the surface. Horizontal movement away from the edge of the floodwater ranged from almost zero on some plots to at least 38 m. The extensive horizontal movement was confined within narrow aquifers which occurred under some plots. Trees in plots underlain by a shallow aquifer always had higher xylem pressure potential (XPP, MPa) than other trees, and flooding these plots increased XPP by a non-significant quantity (−0.14 MPa to −0.12 MPa). However, on the other plots, flooding resulted in a statistically significant increase in XPP from −0.45 to −0.10 MPa. The effect of flooding on XPP was evident for between 22.5 and 37.5 m from the floodwater. This was ascribed to root interception and some horizontal movement of water. Increased flood frequency from zero to one to two per year resulted in mean leaf areas of 11.0 cm2, 12.2 cm2 and 13.2 cm2, respectively. Trees in the runner, at 8 or at 38 m from the channels, had mean leaf areas of 12.9 cm2, 13.6 cm2 and 9.9 cm2, respectively. The presence of shallow aquifers increased mean leaf area from 11.5 to 13.3 cm2. Increased flood frequency significantly increased relative growth rate of trees up to 22.5 m from the edge of the floodwater. We conclude that short-term flooding of channels that occupied 15–20% of the forest floor temporarily improved tree moisture status and this increased tree growth rate in up to 70% of the forest.  相似文献   

13.
The concentration of cadmium in Nucella was investigated at different times of the year at one site. There was no significant difference in tissue cadmium at the times of the year investigated but tissue zinc was more variable. Accumulation and toxicity of cadmium were studied using 50–600 μg Cd l−1 for 21 days. There was no significant seasonal difference in the rate of cadmium uptake but mortality appeared to vary with the season. Nucella did not survive 21 days at 600 μg Cd l−1, but at lower concentrations 50–100 μg Cd l−1 all survived.

Although there was significant drop in oxygen consumption between 7 and 14 days it did not appear to be related to the cadmium exposure. Glycogen levels on the other hand showed a decrease after cadmium treatment, while lipid values remained unchanged. Results are discussed in relation to energy source, season, and adaptation to the environment.  相似文献   


14.
Critical load calculations have suggested that groundwater at depth of 2 m in Sweden is very sensitive to acid load. As environmental isotope studies have shown that most of the runoff in streams has passed through the soil, there is a risk in the near future of accelerated acidification of surface waters.

To assess the importance of the last soil horizon of contact before discharge, the upper 0–0.2m of soils in seven discharge zones were analysed for pools of base cations, acidity and base saturation. The sites were about 3–4 m2 in size and selected from two catchments exposed to different levels of acid deposition.

The soils in the seven sites had high concentrations of exchangeable base cations and consequently high base saturation. The high correlation (r2 = 0.74) between base saturation in the soils of the discharge zones and mean pH of the runoff waters suggested that the discharge zone is important for surface water acidification. The high pool of exchangeable base cations will buffer initially against the acid load. As the cation exchange capacity (meq dm−3) and base saturation were lower in the sites from the catchment receiving lower deposition, these streams may be more vulnerable to acidification in the near future. The high concentration of base cations in non-exchangeable fractions may also buffer against acidification as it is likely that some of these pools will become exchangeable with time.  相似文献   


15.
In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ18O and δ2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l−1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50–60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ18O less than −7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ18O about −7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.  相似文献   

16.
Analytical procedures in the determination of iodine-129 (half-life: 1.6×107 y) have been studied using accelerator mass spectrometry (AMS), with special references to the separation procedures of iodine from soil samples for the AMS measurement. Iodine was successfully volatilized from soil samples by pyrohydrolysis at 1000 °C and collected in a trap solution. Iodine was purified from the matrix by solvent extraction. Finally, it was precipitated as silver iodide to make a target for AMS. In order to obtain information on the 129I/127I ratio in a chemical blank (or iodine carrier), we have determined the ratios in several iodine reagents and found that the ratios fell in a narrow range around 1.7×10−13. The detection limit for soil sample (1 g material) by the present method was about 0.01 mBq/kg or 4×10−11 as the ratio of stable iodine (129I/127I ratio), i.e. these values were much better than that by neutron activation analysis (NAA) used in our previous studies. We have applied this method in the analysis of soil samples collected from different places in Japan. We could successfully determine 129I in soil samples with low 129I concentrations, which could not be detected by NAA. Sample size necessary for the soil analysis by AMS was only about 0.5 g or less, whereas about 100 g of the sample were required for NAA [Muramatsu, Y., Ohmomo, Y., 1986. Iodine-129 and iodine-127 in environmental samples collected from Tokaimura/ Ibaraki, Japan. Sci. Total Environ. 48, 33-43]. Using this method, new data were obtained for the 129I levels in 20 soil samples collected from background areas far from nuclear facilities, and the ranges were 1.4×10−5−4.5×10−3 Bq/kg as 129I concentrations and 3.9×10−11−2.2×10−8 as 129I/127I ratios. These values are useful in understanding the 129I levels in Japanese environments. Higher 129I concentrations were observed in forest soils than those in field and rice paddy soils should be related to the interception effect of atmospheric 129I due to tree canopies. Relatively high 129I/127I ratios found in rice paddy soils could be explained by their low stable iodine concentrations which were caused by the desorption of stable iodine from the rice paddies during the cultivation.  相似文献   

17.
The PSYCHIC process-based model for predicting sediment and phosphorus (P) transfer within catchments uses spatial data on soil-P derived from the National Soil Inventory (NSI) data set. These soil-P values are based on bulked 0–15 cm depth and do not account for variations in soil-P with depth. We describe the depth distribution of soil-P (total and Olsen) in grassland and arable soils for the dominant soil types in the two PSYCHIC study catchments: the Avon and the Wye, UK. There were clear variations in soil-P (particularly Olsen-P) concentrations with depth in untilled grassland soils while concentrations of total-P were broadly constant within the plough layer of arable soils. Concentrations of Olsen-P in arable soils, however, exhibited maximum values near the soil surface reflecting surface applications of fertilisers and manures between consecutive ploughing events. When the soil-P concentrations for the surface soil (0–5 cm average) were compared to both the profile-averaged (0–15 cm) and the NSI (0–15 cm) values, those for the surface soil were considerably greater than those for the average 0–15 cm depth. Modelled estimates of P loss using the depth-weighted average soil-P concentrations for the 0–5 cm depth layer were up to 14% greater than those based on the NSI data set due to the preferential accumulation of P at the soil surface. These findings have important implications for the use of soil-P data (and other data) in models to predict P losses from land to water and the interpretation of these predictions for river basin management.  相似文献   

18.
The concentration of cadmium in sexually mature Nucella lapillus was investigated around the coast of Wales. Higher concentrations of cadmium were found in whelks located in the Bristol Channel compared with Cardigan Bay Nucella. Accumulation and toxicity of cadmium were investigated at 50–600 μg Cd l−1 over a period of 21 days. At the lower concentrations of 50–100 μg Cd l−1 all Nucella survived the 21 days of experimentation. The rate of cadmium uptake after exposure to cadmium was inconsistent and not related to the degree of site contamination. At all sites the concentration of cadmium in Nucella, after treatment with 50–600 μg Cd l−1 for 21 days, was significantly different from controls, but after 7 days it varied with the site and cadmium concentration. Only samples collected at Fishguard, Dale, and Swansea survived 21 days at 600 μg Cd l−1. Tissue cadmium concentrations did not significantly effect the whole body concentration of zinc.  相似文献   

19.
Two ground penetrating radar (GPR) techniques were used to estimate the shallow soil water content at the field scale. The first technique is based on the ground wave velocity measured with a bistatic impulse radar connected to 450 MHz ground-coupled antennas. The second technique is based on inverse modeling of an off-ground monostatic TEM horn antenna in the 0.8–1.6 GHz frequency range. Data were collected on a 8 by 9 m partially irrigated intensive research plot and along four 148.5 m transects. Time domain reflectometry, capacitance sensors, and volumetric soil samples were used as reference measurements. The aim of the study was to test the applicability of the ground wave method and the off-ground inverse modeling approach at the field scale for a soil with a silt loam texture. The results for the ground wave technique were difficult to interpret due to the strong attenuation of the GPR signal, which is related to the silt loam texture at the test site. The root mean square error of the ground wave technique was 0.076 m3 m−3 when compared to the TDR measurements and 0.102 m3 m−3 when compared with the volumetric soil samples. The off-ground monostatic GPR measured less within-field soil water content variability than the reference measurements, resulting in a root mean square error of 0.053 m3 m−3 when compared with the TDR measurements and an error of 0.051 m3 m−3 when compared with the volumetric soil samples. The variability between the two GPR measurements was even larger with a RSME of 0.115 m3 m−3. In summary, both GPR methods did not provide adequate spatial information on soil water content variation at the field scale. The main reason for the deviating results of the ground wave method was the poor data quality due to high silt and clay content at the test site. Additional reasons were shallow reflections and the dry upper soil layer that cannot be detected by the ground wave method. In the case of off-ground GPR, the high sensitivity to the dry surface layer is the most likely reason for the observed deviations. The off-ground GPR results might be improved by using a different antenna that allows data acquisition in a lower frequency range.  相似文献   

20.
We report the first measurements of hydrodynamic dispersion in a microfractured granite using a combination of novel techniques. A fracture network was induced in a cylindrical plug of Ailsa Craig micro-granite by thermal stressing, to produce an isotropic network of fractures with an average aperture of  0.3 μm, a density of approximately 4 × 104 fractures/mm3 and a permeability of 5.5 × 10− 17 m2. After saturating the cores with 0.01 M NaCl solution a step in the concentration profile to 1 M was advected into the plug at flow rates of 0.07 to 2.13 cm3 h− 1. The longitudinal electrical impedance of the plug was measured continuously as the solute front advected through its length until the plug was saturated with the concentrated electrolyte. Analysis of the impedance versus time relationships allows the derivation of the longitudinal dispersion coefficient, DL, and hydrodynamic retardation, RH. The Peclet number–dispersion relationship for the micro-fracture network is very similar to that predicted for other, radically different, fracture networks. Thus dispersion may be more dependent on fracture connectivity and length than fracture density and display a relationship similar to that shown by particle beds and clastic sandstones. The high retardation values observed (2.2–4.9) reflect flow behaviour within a fracture network with a proportion of ‘blind’ sections, and demonstrates how such networks can slow the advance of conservative solute components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号