首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used simultaneous measurements of surface PM_(2.5) concentration and vertical profiles of aerosol concentration,temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM_(2.5) pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM_(2.5) pollution at the surface to the upper levels of the atmosphere. The amount of surface PM_(2.5) pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM_(2.5) pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern–central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM_(2.5) concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.  相似文献   

2.
We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP–Department of Energy reanalysis outputs and observations from meteorological stations. The analysis focused on the impacts of high-frequency(period 90 days) variations in meteorological conditions on persistent pollution events(those lasting for at least 3 days). Persistent pollution events tended to occur in association with slow-moving weather systems producing stagnant weather conditions, whereas rapidly moving weather systems caused a dramatic change in the local weather conditions so that the pollution event was short-lived. Although Beijing was under the influence of anomalous southerly winds in all four seasons during pollution events, notable differences were identified in the regional patterns of sea-level pressure and local anomalies in relative humidity among persistent pollution events in different seasons. A region of lower pressure was present to the north of Beijing in spring, fall, and winter, whereas regions of lower and higher pressures were observed northwest and southeast of Beijing, respectively, in summer. The relative humidity near Beijing was higher in fall and winter, but lower in spring and summer. These differences may explain the seasonal dependence of the relationship between air pollution and the local meteorological variables. Our analysis showed that the temperature inversion in the lower troposphere played an important part in the occurrence of air pollution under stagnant weather conditions.Some results from this study are based on a limited number of events and thus require validation using more data.  相似文献   

3.
The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter(PM) concentration and the meteorological data within the atmospheric boundary layer(ABL). During the observational period, the maximum hourly mean PM_(2.5) and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m–3 and from 378 to 442 μg m–3, respectively, and the lowest hourly mean atmospheric visibility(VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed(WS) within the ABL( 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s–1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time(LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height(ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM_(2.5) in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event.The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.  相似文献   

4.
This paper concerns about the episodes of PM_(2.5) pollution that frequently occur in China in winter months. The severity of PM_(2.5) pollution is strongly dependent on the synoptic-scale atmospheric conditions. We combined PM_(2.5) concentration data and meteorological data with the Hybrid Single Particle Lagrangian Integrated Trajectory model(HYSPLIT4) to investigate the dominant synoptic patterns and their relationships with PM_(2.5) pollution over the Beijing–Tianjin–Hebei(BTH) and Yangtze River Delta(YRD) regions in the winters of 2014–17. The transport of PM_(2.5) from the BTH to YRD regions was examined by using cluster analysis and HYSPLIT4. It is found that the level of PM_(2.5) pollution over the BTH region was higher than that over the YRD region. The concentration of PM_(2.5) in the atmosphere was more closely related to meteorological factors over the BTH region. The episodes of PM_(2.5) pollution over the BTH region in winter were related to weather patterns such as the rear of a high-pressure system approaching the sea, a high-pressure field, a saddle pressure field, and the leading edge of a cold front. By contrast,PM_(2.5) pollution episodes in the YRD region in winter were mainly associated with the external transport of cold air, a high-pressure field, and a uniform pressure field. Cluster analysis shows that the trajectories of PM_(2.5) were significantly different under different weather patterns. PM_(2.5) would be transported from the BTH to the YRD within 48 h when the PM_(2.5) pollution episodes were associated with three different kinds of weather patterns: the rear of a highpressure system approaching the sea, the high-pressure field, and the leading edge of a cold front over the BTH region. This suggests a possible method to predict PM_(2.5) pollution episodes based on synoptic-scale patterns.  相似文献   

5.
The transports of dust are calculated using 3-dimensional(3-D)trajectory method for three cases of duststorms inthe terrain-following coordinate system,and the synoptic processes are also discussed for each case.The case of 17—20April 1980,a severe duststorm was associated with the rapid development of a cyclone over the Mongolia Plateau.Thedust moved from west to east across several deserts,formed a typical dust path in spring.The other two were weaker andthe dust was triggered by the strong wind behind the cold front from northwest or north.Because the vertical velocity isconsidered in 3-D trajectory analysis,trajectories calculated should better reveal the transport rule of the dust particlesand the results seem to be more consistent with the synoptic processes.The trajectory analysis on the 2-D isobaric sur-faces is simpler but can be used only in the conditions with weak vertical wind shear and weak vertical velocity.The dif-ference of trajectories at lower levels between two methods may be caused by the different treatment of orography.  相似文献   

6.
The NCEP Global Data Assimilation System analysis of grid data, satellite products of Naval Research Laboratory, conventional meteorological data and observations of automatic weather stations in Guangdong province were used together with environmental conditions, atmospheric circulation, and physical characteristics to diagnose the cause and mechanism of the intensification of tropical cyclone Higos in Southern China. The results showed that favorable environmental conditions of high temperature, humidity of the underlying surface, strong upper divergence, weak vertical wind shear, and the persistence of a southwest jet stream beside the southern Higos were the necessary ingredients that contributed to the maintenance of intensity and re-intensification of Higos. The sinking intrusion of cold air from the lower troposphere was the critical condition for its intensification over land. The frontal genesis caused by weak cold air increased the lower tropospheric convergence and updraft, and the condensation latent heat released by heavy rains promoted convergence. From this positive feedback process, Higos obtained an increasing of positive vorticity and re-intensified over land. The re-intensification was due not only to the build-up of wind and the reduction of pressure but also to the simultaneous warm-up of its warm core.  相似文献   

7.
With rapid urbanization in recent years, severe air pollution has emerged as a major issue for many regions of China, especially in some metropolises. A persistent pollution case during 6 December 2016–8 January 2017 was selected to investigate the relations between turbulent intermittency and frequent PM_(2.5)(particulate matters with diameter less than 2.5 μm) pollution events over the metropolitan region of Beijing, China. The accumulation of PM_(2.5) near the surface frequently occurred as a combined result of strong inversion layers, stagnant winds, high ambient humidity levels, and stable stratification during this case. Arbitrary-order Hilbert spectral analysis indicated that steep decreases in the PM_(2.5) concentration were simultaneous with the occurrence of intermittent turbulence and strong vertical mixing. A wind profiler observation revealed existence of low-level jets(LLJs) at the end of the polluted periods, suggesting that the upper-level turbulent mixing accompanied by the wind shear of LLJ was transported downward and enhanced the vertical mixing near the surface, which might have caused an abrupt reduction in PM_(2.5) and improvement in air conditions.  相似文献   

8.
There is an increased demand for the accurate prediction of fog events in the Sichuan Basin (SCB) using numerical methods. A dense fog event that occurred over the SCB on 22 December 2016 was investigated. The results show that this dense fog event was influenced by the southwest of a low pressure with a weak horizontal pressure gradient and high relative humidity. This fog event showed typical diurnal variations. The fog began to form at 1800 UTC on 21 December 2016 (0200 local standard time on 22 December 2016) and dissipated at 0600 UTC on 22 December 2016 (1400 local standard time on 22 December 2016). The Weather Research and Forecasting model was able to partially reproduce the main features of this fog event and the diurnal variation in the local mountain to basin winds. The simulated horizontal visibility and liquid water content were used to characterize the fog. The mountain to basin winds had an important role in the diurnal variation of the fog event. The positive feedback mechanism between the fog and mountain to basin winds was good for the formation and maintain of the fog during the night. During the day, the mountain to basin wind displayed a transition from downslope flows to upslope flows. Water vapor evaporated easily from the warm, strong upslope winds, which resulted in the dissipation of fog during the day. The topography surrounding the SCB favored the lifting and condensation of air parcels in the lower troposphere as a result of the low height of the lifting condensation level.  相似文献   

9.
The North China Plain (NCP) has recently faced serious air quality problems as a result of enhanced gas pollutant emissions due to the process of urbanization and rapid economic growth. To explore regional air pollu- tion in the NCP, measurements of surface ozone (O3), nitrogen oxides (NOx), and sulfur dioxide (SO2) were car- ried out from May to November 2013 at a rural site (Xianghe) between the twin megacities of Beijing and Tianjin. The highest hourly ozone average was close to 240 ppbv in May, followed by around 160 ppbv in June and July. High ozone episodes were more notable than in 2005 and were mainly associated with air parcels from the city cluster in the hinterland of the polluted NCP to the southwest of the site. For NOx, an important ozone precur- sor, the concentrations ranged from several ppbv to nearly 180 ppbv in the summer and over 400 ppbv in the fall. The occurrence of high NOx concentrations under calm condi- tions indicated that local emissions were dominant in Xianghe. The double-peak diurnal pattern found in NOx concentrations and NO/NOx ratios was probably shaped by local emissions, photochemical removal, and dilution re- sulting from diurnal variations of surface wind speed and the boundary layer height. A pronounced SO2 daytime peak was noted and attributed to downward mixing from an SO2-rich layer above, while the SO2-polluted air mass transported from possible emission sources, which differed between the non-heating (September and October) and heating (November) periods, was thought to be responsible for night-time high concentrations.  相似文献   

10.
The concentration of ice nuclei (IN) and the relationship with aerosol particles were measured and analyzed using three 5-L mixing cloud chambers and a static diffusion cloud chamber at three altitudes in the Huangshan Mountains in Southeast China from May to September 2011.The results showed that the mean total number concentration of IN on the highest peak of the Huangshan Mountains at an activation temperature (Ta) of-20℃C was 16.6 L-1.When the supersaturation with respect to water (Sw) and with respect to ice (Si) were set to 5%,the average number concentrations of IN measured at an activation temperature of-20℃C by the static diffusion cloud chamber were 0.89 and 0.105 L-1,respectively.A comparison of the concentrations of IN at three different altitudes showed that the concentration of IN at the foot of the mountains was higher than at the peak.A further calculation of the correlation between IN and the concentrations of aerosol particles of different size ranges showed that the IN concentration was well correlated with the concentration of aerosol particles in the size range of 1.2-20 μtm.It was also found that the IN concentration varied with meteorological conditions,such as wind speed,with higher IN concentrations often observed on days with strong wind.An analysis of the backward trajectories of air masses showed that low IN concentrations were often related to air masses travelling along southwest pathways,while higher IN concentrations were usually related to those transported along northeast pathways.  相似文献   

11.
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM) and tropospheric ozone(O_3). With the implementation of air pollution prevention and control actions in the last five years, the PM pollution in China has been substantially reduced. In contrast, under the conditions of the urban air pollution complex, the elevated O_3 levels in city clusters of eastern China, especially in warm seasons, have drawn increasing attention. Emissions of air pollutants and their precursors not only contribute to regional air quality, but also alter climate. Climate change in turn can change chemical processes, long-range transport, and local meteorology that influence air pollution. Compared to PM, less is known about O_3 pollution and its climate effects over China. Here, we present a review of the main findings from the literature over the period 2011–18 with regard to the characteristics of O_3 concentrations in China and the mechanisms that drive its interannual to decadal variations, aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps. We also review regional and global modeling studies that have investigated the impacts of tropospheric O_3 on climate, as well as the projections of future tropospheric O_3 owing to climate and/or emission changes.  相似文献   

12.
To better understand the characteristics of air quality and the relationship between the chemical composition evolution and source variation,an intensive atmospheric campaign was conducted in Tianjin,a megacity of the North China Plain,from 10 February to 6 March 2015.There were 20 days exceeding the threshold value of secondary Chinese Ambient Air Quality Standards for PM2.5(75 μg m-3,daily average over 24 h)during the study period.Five air pollution episodes were selected for investigation.During the pre-holiday pollution episode,NH~+_4,NO~-_3,and SO~(2-)_4 were more abundant,indicating that air pollution was caused by motor vehicle exhaust emissions and coal consumption under unfavorable meteorological conditions.During Chinese Lunar New Year's Eve,widespread use of fireworks resulted in extremely high aerosol concentrations.Firework displays caused increases in K+ and also enrichment of SO~(2-)_4 relative to NO~-_3.The holiday pollution episode was caused by regional transport,characterized by abundant SO~(2-)_4 and NH~+_4.In addition,the aging processes of the particles from fireworks discharge played an important role in the formation of NO-3and SO~(2-)_4.The Lantern Festival episode was characterized by a transition from the enrichment of K+ to secondary inorganic ions(NO~-_3,SO~(2-)_4,and NH~+_4).The results of this study are useful for a detailed understanding of the variation in atmospheric compositions and sources caused by anthropogenic activity,and highlight the importance of controlling intensive fireworks discharge.  相似文献   

13.
Based on the composite analysis method, 12 rainstorms triggered by Bay of Bengal storms(shortened as B-storms hereafter) across the whole province of Yunnan were studied, and some interesting results of rain and circulation characteristics influenced by the storms were obtained for low-latitude plateau.Usually, when a rainstorm weather occurs in low-latitude plateau, the B-storm center locates in the central,east or north parts of the Bay of Bengal. At the same time, the subtropical high ridge moves to 15°N - 20°Nand the west ridge point moves to the Indo-china Peninsula from the South China Sea and the low-latitude plateau is controlled by southwest air streams coming from the front of the trough and the periphery of the subtropical high. The southwest low-level jet stream from the east side of the bay storm has great effect on heavy rains. On the one hand, the southwest low-level jet stream is playing the role of transporting water vapor and energy. On the other hand, the southwest low-level jet stream is helpful to keep essential dynamical condition. From the analysis of the satellite cloud imagery, it is found that mesoscale convection cloud clusters will keep growing and moving into the low-latitude plateau to cause heavy rains when a storm forms in the Bay of Bengal.  相似文献   

14.
A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Environmental Protection Agency, USA (USEPA) in 1997 except for the Ming Tombs site. PM2.5 concentrations in winter are much higher than in summer. The 16 Polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high performance liquid chromatography (HPLC) with variable wavelength detector (VWD) and fluorescence detector (FLD) employed. The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing. The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m^-3. The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission. New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.  相似文献   

15.
In this paper, a typical mei-yu front process with heavy rainfall from June 12 to 15 in 1998 is analyzed. The results show that the mei-yu front is a front system which consists of an iso-θe dense area with strong horizontal gradient, a deep-convective cloud tower band, a passageway transporting warm and moist air flow from the summer monsoon surge in the mid and low levels to the south of the mei-yu front,and a migrating synoptic scale trough to the north of the mei-yu front, which transports cold and dry air southward in the mid and upper levels. The maintenance of the mei-yu front is realized by: (1) is a positive feedback between the moist physical process enhancing frontogenesis and the development of the strong convective system in front of the mei-yu front; (2) the sustaining system to the north of the mei-yu front which is a migrating synoptic scale trough transporting cold and dry air to the mei-yu front and positive vorticity to the mesoscale system in front of the mei-yu front.  相似文献   

16.
With the hourly data of Air Pollution Index (API) by Hong Kong Environmental Protection Department (HKEPD) during the 6 years of 2000 - 2005 and NCEP / NCAR reanalysis data of 2.5° × 2.5° wind and pressure fields, the characteristics of API in Hong Kong area and the impacts of typical weather characteristics on the air pollution in Hong Kong have been studied. The results are shown as follows. (1) The API exhibits obvious seasonal variability as the number of air pollution days increases by the year. For most of the local monitoring stations, it is the most from January to March, a little less from July to September and the least from April to June. (2) There are four typical types of weather situations that are responsible for the air pollution in Hong Kong: tropical cyclones, continental cold highs, transformed highs that have moved out to sea and low pressure troughs.  相似文献   

17.
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location o  相似文献   

18.
This paper investigates, the variability and correlation of surface ozone (Os) and carbon monoxide (CO) observed at Cape D'Aguilar in Hong Kong from 1 January 1994 to 31 December 1995. Statistical analysis shows that the average O3 and CO mixing ratios during the two years are 32±17ppbv and 305±191 ppbv, respectively. The O3/CO ratio ranges from 0.05 to 0.6 ppbv/ppbv with its frequency peaking at 0.15. The raw dataset is divided into six groups using backward trajectory and cluster analyses. For data assigned to the same trajectory type, three groups are further sorted out based on CO and NOX mixing ratios. The correlation coefficients and slopes of O3/CO for the 18 groups are calculated using linear regression analysis. Finally, five kinds of air masses with different chemical features are identified: continental background (CB), marine background (MB), regional polluted continental (RPC), perturbed marine (P*M), and local polluted (LP) air masses. Further studies indicate that O3 and CO in the conti  相似文献   

19.
1 INTRODUCTION Inflicting hundreds of millions yuan (RMB) worth of economic losses annually, strong winds and torrential rains caused by tropical cyclones are two of the major meteorological disasters exposed in the southeastern coast of China. Much effort has been devoted to the research on the patterns of TC genesis, evolution and variation. Being to southeast of Chinese mainland, the island of Taiwan is separated from Fujian province by the Taiwan Strait to the west and faces the P…  相似文献   

20.
Three atmospheric boundary layer(ABL) schemes and two land surface models that are used in the Weather Research and Forecasting(WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France(Dunkerque). The ABL schemes YSU(Yonsei University),ACM2(Asymmetric Convective Model version 2), and MYJ(Mellor–Yamada–Janjic) were combined with two land surface models, Noah and RUC(Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer(TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号