共查询到15条相似文献,搜索用时 78 毫秒
1.
腾格里沙漠东南缘荒漠植被盖度月变化特征及生态恢复 总被引:20,自引:3,他引:20
研究表明:封育区植被盖度一年四季大于未封育区,在正常年份的生长季内前者植被盖度为17.89%~29.39%,后者为11.60%~16.05%。封育区和未封育区150 m样线上的灌木植物在70~90株(丛)和60~70株(丛)之间,基本保持稳定;草本植物个体数月变化则显著,未封育区从4月份以后数量递增, 7、8月显著增加,8月底达到最大值,而封育区则表现为4、 5月增加,6月减少,7、8、9月线性增加,达到最大值,且未封育区草本植物的数量少于封育区。未封育区由于植被盖度低,灌丛分布不均匀,沙面裸露多,地面风沙流活动强烈,白刺沙包风蚀严重;而封育区植被盖度较大,灌丛分布较均匀,风沙流活动弱,白刺沙包稳定,形成了较为稳定的自然植被生态系统。试验表明,在当地气候和地理条件下,通过封育或避免人为干预,荒漠区生态植被的自然恢复,可大大增加防风固沙能力,改善当地的生态环境。 相似文献
2.
干旱区沙漠化逆转过程土壤水分的空间异质性特征 总被引:2,自引:0,他引:2
土壤水分是干旱地区固沙植被生长发育的主要限制因素,是决定沙地生态系统结构和功能的关键因子。在腾格里沙漠南缘,应用空间代替时间的方法,选择流动沙丘以及封育恢复5 a、15 a和25 a的沙漠化逆转过程序列样地,研究了沙漠化逆转过程不同层次土壤水分的动态变化特征;采用地统计学原理与方法,分析了沙漠化逆转过程不同层次土壤水分的空间异质性。结果表明:干旱区沙漠化逆转过程中,土壤水分含量以初始阶段流动沙丘最大,之后逐渐降低,到封育恢复25 a后又出现恢复趋势,而且不同阶段样地及其不同层次土壤水分总体差异显著。不同逆转阶段样地各层土壤水分模型均为指数模型和球状模型,土壤水分呈现斑块状分布,具有明显的空间异质性,其中由自相关部分引起的空间异质性占总空间异质性的程度均高于50%。0~20 cm土壤水分总空间异质性程度随沙漠化逆转过程逐渐增强,而20~40 cm和40~60 cm土壤水分的总空间异质性程度随沙漠化逆转过程呈现先增强后减弱趋势。研究认为干旱区流动沙丘固沙植被的恢复首先降低土壤水分含量,增强了土壤水分的空间异质性,但伴随植被-土壤系统的恢复,封育恢复25 a后土壤水分含量出现增加趋势,空间异质性出现减弱趋势,土壤水分与植被间逐渐趋于平衡,该结论有助于进一步认识土壤水分与固沙植被相互作用的生态学机制。 相似文献
3.
土壤微生物量和酶活性是反映土壤功能的关键指标,也是土壤恢复和环境变化的指示器。以流动沙丘为对照,研究了腾格里沙漠东南缘人工固沙植被区表层0~5、5~10、10~20 cm土壤微生物量碳氮和酶活性随植被恢复的变化特征。结果显示:土壤微生物碳氮含量和脲酶、多酚氧化酶、碱性磷酸酶、过氧化氢酶、淀粉酶、纤维素酶、蔗糖酶活性均随植被恢复年限延长而增大,随土层深度增加而减小,不同年代植被区及不同土层间差异均显著(P<0.05)。其中0~5 cm土层变化最明显,经过62年植被恢复后土壤微生物碳氮量和脲酶、多酚氧化酶、碱性磷酸酶、过氧化氢酶、淀粉酶、纤维素酶、蔗糖酶活性分别增加了16.44、8.79、3.99、3.01、2.54、19.35、0.77、0.65、16.61倍,年平均变化速率分别为1.55、0.21 mg·kg-1和6.14×10-4、1.25×10-2、9.32×10-4、6.05×10-2、8.22×10-5、9.07×10-5、4.24×10-3 mg·g-1·h-1。土壤微生物量和酶活性与土壤理化性质高度相关,除与沙粒、容重呈负相关关系外,与土壤粉粒、黏粒、pH、电导率、有机碳、无机碳、全氮、碱解氮、速效磷和速效钾含量呈正相关关系。这表明种植旱生灌木能够有效促进沙地土壤功能恢复并改善沙区环境。 相似文献
4.
腾格里沙漠南缘植被恢复过程中土壤理化性状的变化 总被引:2,自引:0,他引:2
土壤有机碳是土壤质量的关键指标,也是评估陆地生态系统碳库对大气CO2源、汇效应转变的基础。本文分析了腾格里沙漠南缘植被恢复过程中土壤物理性质、有机碳含量及其组分特征。结果表明:在围封后,土壤容重随着植被恢复年限的延长呈指数级减小,孔隙度、黏粒含量和田间持水量则表现出随年限延长而显著增大的趋势;土壤有机碳、微生物量碳、轻组有机碳和重组有机碳含量随着围封抚育年限的延长而显著增加,轻组有机碳占总有机碳的比例随植被恢复年限的延长而增大,而重组碳所占比例则随时间变化显著下降。土壤有机碳与容重呈显著负相关,而与其他参数呈显著正相关,说明其变化受多种因素影响,且对土壤物理性质的变化有重要意义。 相似文献
5.
腾格里沙漠沙丘固定后土壤的斥水性特征研究 总被引:1,自引:1,他引:1
土壤斥水性是重要的土壤物理属性,对土壤水文过程和地貌过程有重要的影响。利用毛细上升法研究了腾格里沙漠东南缘沙丘固定后土壤的斥水性特征,分析了不同小地形、不同土壤深度和不同土壤粒径土壤的斥水性差异。结果表明,固沙植被建立后显著地改变了沙丘的土壤斥水性,且随沙丘固定时间增加而呈增强的趋势。丘间地和迎风坡的土壤斥水性大于丘顶和背风坡的斥水性。0~3 cm土层的土壤斥水性显著大于3~6 cm。随着粒径的不断增大,土壤斥水性呈减小趋势,不同粒径段土壤斥水性差异显著;且土壤斥水性与粒径分别为0~0.05 mm、0.05~0.01 mm、0.01~0.15 mm的土壤呈极显著正相关线性关系,与粒径大于0.15 mm的土壤呈显著负相关线性关系。植被区土壤斥水性的增加可能与大气降尘在固定沙丘表面不断沉积、生物土壤结皮形成,尤其是藻类和地衣的形成有关,斥水性的增强将影响到植物种在沙丘上的有效水分利用。 相似文献
6.
腾格里沙漠东南缘生物土壤结皮对土壤理化性质的影响 总被引:2,自引:1,他引:2
生物土壤结皮是荒漠生态系统地表景观的重要组成部分,在沙化土地恢复和流沙固定中起着重要作用。研究了腾格里沙漠东南缘固沙植被区不同类型生物土壤结皮理化性质及结皮发育对下层土壤性质的影响。结果表明:结皮层厚度、孔隙度、黏粉粒和田间持水量以及有机碳、无机碳、全氮、碱解氮、速效磷、速效钾含量和电导率均表现为藓类结皮 > 混生结皮 > 地衣结皮 > 藻类结皮;砂粒含量和容重表现为藻类结皮 > 地衣结皮> 混生结皮 > 藓类结皮。结皮下0~2 cm和2~5 cm土层理化性质表现出与结皮层相同的变化规律。总体上,生物土壤结皮对下层土壤理化性质的影响表现为藓类结皮和混生结皮大于地衣结皮和藻类结皮;而结皮对下层土壤理化性质的影响随土壤深度的增加而减小。生物土壤结皮的拓殖和发育是荒漠生态系统成土过程和土壤质量的关键影响因素。 相似文献
7.
腾格里沙漠东南缘白刺灌丛地土壤性状的特征 总被引:7,自引:0,他引:7
腾格里沙漠东南缘白刺灌丛地土壤颗粒组成中仍以细沙粒(0.25~0.05 mm)含量占主要成分(80%~99%),除固定沙堆土0~5 cm土壤粉沙粒含量高于堆间低地外,沙堆土不同深度粉沙粒含量(0.05~0.002 mm)均低于堆间低地;沙堆不同部位的土壤含水量有一致的变化趋势且差异不大,沙堆0~60 cm土层含水量低于堆间低地,60 cm以下的土壤含水量不仅高于0~60 cm,并且高于堆间低地。发育于草甸盐土上的堆间低地20 cm以下水分含量变化基本保持在较高的水平,发育于盐化半固定风沙土上的堆间低地水分含量在20 cm以下呈急剧降低趋势。白刺沙堆上土壤剖面土壤水分含量的这种变化和堆间低地20 cm处较高的含水层,将会为灌丛植物在年内气候干旱期的生命维持提供着重要水源保证。土壤容重白刺沙堆大于堆间低地,土壤剖面堆间低地的容重基本无变异,而沙堆上因为植物发育土壤容重有不同程度的差异。表征土壤肥力和保肥能力的阳离子代换量均是堆间低地大于沙堆上。堆间低地和沙堆上土壤全氮、有机质、电导率含量和pH值差异因白刺沙堆发育的生境不同而不同,处于半固定沙地生境的白刺沙堆并未形成灌丛的"沃岛效应",处于固定沙地生境的白刺沙堆有弱"沃岛效应"。因此,白刺沙堆地表物质的固定是该植物种生长的生境产生"沃岛效应"的前提。 相似文献
8.
干旱区沙漠化土地逆转植被的防风固沙效益研究 总被引:14,自引:8,他引:14
使用便携式防沙风速廓线测量仪和阶梯式集沙仪测定了单个植物的阻风作用以及不同恢复阶段植被内的近地面风速、输沙量;同时调查了不同恢复阶段植被的组成、覆盖度,土壤理化性质。结果表明,油蒿、沙蒿、柠条和花棒的个体空间构型分别是:沙蒿、花棒株型为疏散丛生型;柠条株型为中间丛生型;油蒿株型为紧密丛生型;近地面0~50 cm层的阻风阻沙作用效果由强到弱依次为油蒿>沙蒿>柠条>花棒。演替更新过程中,柠条、花棒、沙蒿逐渐衰退,到顶级群落阶段已完全从群落中退出,油蒿形成单一优势种顶级群落。由于优势种群的变化,从初始阶段→发展阶段→相对稳定阶段(顶级群落阶段)的演替更新过程中,近地面粗糙度从0.003 cm、6.039 cm增加到17.726 cm;在流动沙丘2 m高度风速为6.5 m·s-1时,相对稳定阶段没有出现风蚀,发展阶段输沙量只达到1.83 g·cm-1·h-1,占到初始阶段的3.2%。在3 m高度风速相同时,发展阶段近地面风速较初始阶段降低了54.29%,沙结皮厚度达到1~3 mm,所占面积比例达到91%,已经基本实现防风固沙;相对稳定阶段近地面风速较初始阶段降低了83.68%,沙结皮厚度达到5~6 mm,所占面积比例达到98%,完全实现防风固沙。 相似文献
9.
10.
11.
灌木生物量模型是预测灌木生物量最有效的方法。选择腾格里沙漠南缘荒漠生态系统中常见的4种灌木(驼绒藜(Ceratoides latens)、盐爪爪(Kalidium foliatum)、珍珠猪毛菜(Salsola passerina)、红砂(Reaumuria soongarica))为研究对象,以株高(H)和冠幅(C)的复合因子灌木体积(V)为自变量,通过回归分析,分别构建了4种灌木和混合物种的叶、新生枝、老龄枝、地上部分、地下部分和整株生物量的预测模型。通过决定系数(R2)、估计值的标准误(SEE)和回归检验显著水平(p<0.05)筛选出了最优的生物量估测模型。结果显示:4种灌木的生物量模型主要以幂函数W=aVb为最优模型,少数以三次函数W=a+bV+cV2+dV3为最优模型。灌木生物量与V之间呈极显著的相关关系(p<0.001),决定系数较高,分别为:叶片(0.775<R2<0.866),新生枝(0.694<R2<0.840),老龄枝(0.819<R2<0.916),地上部(0.832<R2<0.917),地下部分(0.74<R2<0.808),全株(0.811<R2<0.912),说明预测模型可以应用于此4种灌木的生物量估算。不同物种之间及不同器官之间的生物量模型存在差异,在实际使用中,要根据物种来选择相应的模型。生物量模型的建立有助于全面估算荒漠生态系统的生物量,并进一步评估生态系统不同碳库的碳存储量与碳循环。为有效提高荒漠草地碳储量、合理实施生态系统管理和人为干预提供科学依据。 相似文献
12.
沙漠化逆转过程的耗散理论应用 总被引:6,自引:5,他引:6
用耗散结构理论探讨了沙漠化逆转过程的时间序列和空间结构,论述了沙漠化逆转过程中的“涨落”现象、耗散结构的形成及非平衡相变的发生。指出属于开放系统的沙漠化逆转过程表现为时间序列的有序和空间结构的无序,是多重耗散结构下的从无序到有序的过程,并在特定的条件下具有自我调控的组织能力。熵增代表着沙漠化过程,负熵增代表着沙漠化逆转过程。这对研究沙漠化过程的平衡稳定有序与非平衡稳定有序的关系,恶化与逆转、单因素与综合、部分与整体的关系提供了新的理论武器,并认为耗散结构理论的思想有助于建立一门有关“过程”的沙漠生态学,以丰富沙漠化研究的理论意义。 相似文献
13.
Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas. 相似文献
14.
15.
腾格里沙漠东南缘飞播区白沙蒿植被密度与土壤水分关系的研究 总被引:13,自引:3,他引:13
对腾格里沙漠东南缘飞机播种区不同密度白沙蒿(Artemisia sphaerocephala Krasch)人工草地的土壤水分和植物生长状况进行研究。结果表明,白沙蒿密度在5.1~9株·m-2时,整个生长期土壤水分处于严重亏缺状态, 0~100 cm土层水分含量仅为0.55%~0.7%,白沙蒿死亡率高达55%~76.7%;密度在1.9株·m-2时,其土壤水分含量在0.65%~1.01%,白沙蒿死亡率为21.1%;密度在1.25株·m-2时,土壤水分在0.79%~1.48%,白沙蒿无一株死亡,且植株个体生长状况好于密度大样地,并有自繁育苗补偿,这表明研究区种植白沙蒿的适宜密度在1株·m-2左右。裸露沙地0~100 cm土壤含水量为1.3%~2.48%。 相似文献