首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiscale finite-volume method for density-driven flow in porous media   总被引:1,自引:0,他引:1  
The multiscale finite-volume (MSFV) method has been developed to solve multiphase flow problems on large and highly heterogeneous domains efficiently. It employs an auxiliary coarse grid, together with its dual, to define and solve a coarse-scale pressure problem. A set of basis functions, which are local solutions on dual cells, is used to interpolate the coarse-grid pressure and obtain an approximate fine-scale pressure distribution. However, if flow takes place in presence of gravity (or capillarity), the basis functions are not good interpolators. To treat this case correctly, a correction function is added to the basis function interpolated pressure. This function, which is similar to a supplementary basis function independent of the coarse-scale pressure, allows for a very accurate fine-scale approximation. In the coarse-scale pressure equation, it appears as an additional source term and can be regarded as a local correction to the coarse-scale operator: It modifies the fluxes across the coarse-cell interfaces defined by the basis functions. Given the closure assumption that localizes the pressure problem in a dual cell, the derivation of the local problem that defines the correction function is exact, and no additional hypothesis is needed. Therefore, as in the original MSFV method, the only closure approximation is the localization assumption. The numerical experiments performed for density-driven flow problems (counter-current flow and lock exchange) demonstrate excellent agreement between the MSFV solutions and the corresponding fine-scale reference solutions.  相似文献   

2.
Efficient heat exploitation strategies from geothermal systems demand for accurate and efficient simulation of coupled flow-heat equations on large-scale heterogeneous fractured formations. While the accuracy depends on honouring high-resolution discrete fractures and rock heterogeneities, specially avoiding excessive upscaled quantities, the efficiency can be maintained if scalable model-reduction computational frameworks are developed. Addressing both aspects, this work presents a multiscale formulation for geothermal reservoirs. To this end, the nonlinear time-dependent (transient) multiscale coarse-scale system is obtained, for both pressure and temperature unknowns, based on elliptic locally solved basis functions. These basis functions account for fine-scale heterogeneity and discrete fractures, leading to accurate and efficient simulation strategies. The flow-heat coupling is treated in a sequential implicit loop, where in each stage, the multiscale stage is complemented by an ILU(0) smoother stage to guarantee convergence to any desired accuracy. Numerical results are presented in 2D to systematically analyze the multiscale approximate solutions compared with the fine scale ones for many challenging cases, including the outcrop-based geological fractured field. These results show that the developed multiscale formulation casts a promising framework for the real-field enhanced geothermal formations.  相似文献   

3.
Upscaled flow functions are often needed to account for the effects of fine-scale permeability heterogeneity in coarse-scale simulation models. We present procedures in which the required coarse-scale flow functions are statistically assigned to an ensemble of upscaled geological models. This can be viewed as an extension and further development of a recently developed ensemble level upscaling (EnLU) approach. The method aims to efficiently generate coarse-scale flow models capable of reproducing the ensemble statistics (e.g., cumulative distribution function) of fine-scale flow predictions for multiple reservoir models. The most expensive part of standard coarsening procedures is typically the generation of upscaled two-phase flow functions (e.g., relative permeabilities). EnLU provides a means for efficiently generating these upscaled functions using stochastic simulation. This involves the use of coarse-block attributes that are both fast to compute and correlate closely with the upscaled two-phase functions. In this paper, improved attributes for use in EnLU, namely the coefficient of variation of the fine-scale single-phase velocity field (computed during computation of upscaled absolute permeability) and the integral range of the fine-scale permeability variogram, are identified. Geostatistical simulation methods, which account for spatial correlations of the statistically generated upscaled functions, are also applied. The overall methodology thus enables the efficient generation of coarse-scale flow models. The procedure is tested on 3D well-driven flow problems with different permeability distributions and variable fluid mobility ratios. EnLU is shown to capture the ensemble statistics of fine-scale flow results (water and oil flow rates as a function of time) with similar accuracy to full flow-based upscaling methods but with computational speedups of more than an order of magnitude.  相似文献   

4.
For the past 10 years or so, a number of so-called multiscale methods have been developed as an alternative approach to upscaling and to accelerate reservoir simulation. The key idea of all these methods is to construct a set of prolongation operators that map between unknowns associated with cells in a fine grid holding the petrophysical properties of the geological reservoir model and unknowns on a coarser grid used for dynamic simulation. The prolongation operators are computed numerically by solving localized flow problems, much in the same way as for flow-based upscaling methods, and can be used to construct a reduced coarse-scale system of flow equations that describe the macro-scale displacement driven by global forces. Unlike effective parameters, the multiscale basis functions have subscale resolution, which ensures that fine-scale heterogeneity is correctly accounted for in a systematic manner. Among all multiscale formulations discussed in the literature, the multiscale restriction-smoothed basis (MsRSB) method has proved to be particularly promising. This method has been implemented in a commercially available simulator and has three main advantages. First, the input grid and its coarse partition can have general polyhedral geometry and unstructured topology. Secondly, MsRSB is accurate and robust when used as an approximate solver and converges relatively fast when used as an iterative fine-scale solver. Finally, the method is formulated on top of a cell-centered, conservative, finite-volume method and is applicable to any flow model for which one can isolate a pressure equation. We discuss numerical challenges posed by contemporary geomodels and report a number of validation cases showing that the MsRSB method is an efficient, robust, and versatile method for simulating complex models of real reservoirs.  相似文献   

5.
6.
The MultiScale Finite Volume (MSFV) method is known to produce non-monotone solutions. The causes of the non-monotone solutions are identified and connected to the local flux across the boundaries of primal coarse cells induced by the basis functions. We propose a monotone MSFV (m-MSFV) method based on a local stencil-fix that guarantees monotonicity of the coarse-scale operator, and thus, the resulting approximate fine-scale solution. Detection of non-physical transmissibility coefficients that lead to non-monotone solutions is achieved using local information only and is performed algebraically. For these ‘critical’ primal coarse-grid interfaces, a monotone local flux approximation, specifically, a Two-Point Flux Approximation (TPFA), is employed. Alternatively, a local linear boundary condition can be used for the dual basis functions to reduce the degree of non-monotonicity. The local nature of the two strategies allows for ensuring monotonicity in local sub-regions, where the non-physical transmissibility occurs. For practical applications, an adaptive approach based on normalized positive off-diagonal coarse-scale transmissibility coefficients is developed. Based on the histogram of these normalized coefficients, one can remove the large peaks by applying the proposed modifications only for a small fraction of the primal coarse grids. Though the m-MSFV approach can guarantee monotonicity of the solutions to any desired level, numerical results illustrate that employing the m-MSFV modifications only for a small fraction of the domain can significantly reduce the non-monotonicity of the conservative MSFV solutions.  相似文献   

7.
We present a variational multiscale mixed finite element method for the solution of Darcy flow in porous media, in which both the permeability field and the source term display a multiscale character. The formulation is based on a multiscale split of the solution into coarse and subgrid scales. This decomposition is invoked in a variational setting that leads to a rigorous definition of a (global) coarse problem and a set of (local) subgrid problems. One of the key issues for the success of the method is the proper definition of the boundary conditions for the localization of the subgrid problems. We identify a weak compatibility condition that allows for subgrid communication across element interfaces, a feature that turns out to be essential for obtaining high-quality solutions. We also remove the singularities due to concentrated sources from the coarse-scale problem by introducing additional multiscale basis functions, based on a decomposition of fine-scale source terms into coarse and deviatoric components. The method is locally conservative and employs a low-order approximation of pressure and velocity at both scales. We illustrate the performance of the method on several synthetic cases and conclude that the method is able to capture the global and local flow patterns accurately.  相似文献   

8.
We derive a new formulation for the compositional compressible two-phase flow in porous media. We consider a liquid–gas system with two components: water and hydrogen. The formulation considers gravity, capillary effects, and diffusivity of each component. The main feature of this formulation is the introduction of the global pressure variable that partially decouples the system equations. To formulate the final system, and in order to avoid primary unknowns changing between one-phase and two-phase zones, a second persistent variable is introduced: the total hydrogen mass density. The derived system is written in terms of the global pressure and the total hydrogen mass density. The system is capable of modeling the flows in both one and two-phase zones with no changes of the primary unknowns. The mathematical structure is well defined: the system consists of two nonlinear parabolic equations, the global pressure equation, and the total hydrogen mass density equation. The derived formulation is fully equivalent to the original one. Numerical simulations show ability of this new formulation to model efficiently the phase appearance and disappearance.  相似文献   

9.
Homogenization has proved its effectiveness as a method of upscaling for linear problems, as they occur in single-phase porous media flow for arbitrary heterogeneous rocks. Here we extend the classical homogenization approach to nonlinear problems by considering incompressible, immiscible two-phase porous media flow. The extensions have been based on the principle of preservation of form, stating that the mathematical form of the fine-scale equations should be preserved as much as possible on the coarse scale. This principle leads to the required extensions, while making the physics underlying homogenization transparent. The method is process-independent in a way that coarse-scale results obtained for a particular reservoir can be used in any simulation, irrespective of the scenario that is simulated. Homogenization is based on steady-state flow equations with periodic boundary conditions for the capillary pressure. The resulting equations are solved numerically by two complementary finite element methods. This makes it possible to assess a posteriori error bounds.  相似文献   

10.
Multi-phase flow in porous media in the presence of viscous, gravitational, and capillary forces is described by advection diffusion equations with nonlinear parameters of relative permeability and capillary pressures. The conventional numerical method employs a fully implicit finite volume formulation. The phase-potential-based upwind direction is commonly used in computing the transport terms between two adjacent cells. The numerical method, however, often experiences non-convergence in a nonlinear iterative solution due to the discontinuity of transmissibilities, especially in transition between co-current and counter-current flows. Recently, Lee et al. (Adv. Wat. Res. 82, 27–38, 2015) proposed a hybrid upwinding method for the two-phase transport equation that comprises viscous and gravitational fluxes. The viscous part is a co-current flow with a one-point upwinding based on the total velocity and the buoyancy part is modeled by a counter-current flow with zero total velocity. The hybrid scheme yields C1-continuous discretization for the transport equation and improves numerical convergence in the Newton nonlinear solver. Lee and Efendiev (Adv. Wat. Res. 96, 209–224, 2016) extended the hybrid upwind method to three-phase flow in the presence of gravity. In this paper, we present the hybrid-upwind formula in a generalized form that describes two- and three-phase flows with viscous, gravity, and capillary forces. In the derivation of the hybrid scheme for capillarity, we note that there is a strong similarity in mathematical formulation between gravity and capillarity. We thus greatly utilize the previous derivation of the hybrid upwind scheme for gravitational force in deriving that for capillary force. Furthermore, we also discuss some mathematical issues related to heterogeneous capillary domains and propose a simple discretization model by adapting multi-valued capillary pressures at the end points of capillary pressure curves. We demonstrate this new model always admits a consistent solution that is within the discretization error. This new generalized hybrid scheme yields a discretization method that improves numerical stability in reservoir simulation.  相似文献   

11.
We review and perform comparison studies for three recent multiscale methods for solving elliptic problems in porous media flow; the multiscale mixed finite-element method, the numerical subgrid upscaling method, and the multiscale finite-volume method. These methods are based on a hierarchical strategy, where the global flow equations are solved on a coarsened mesh only. However, for each method, the discrete formulation of the partial differential equations on the coarse mesh is designed in a particular fashion to account for the impact of heterogeneous subgrid structures of the porous medium. The three multiscale methods produce solutions that are mass conservative on the underlying fine mesh. The methods may therefore be viewed as efficient, approximate fine-scale solvers, i.e., as an inexpensive alternative to solving the elliptic problem on the fine mesh. In addition, the methods may be utilized as an alternative to upscaling, as they generate mass-conservative solutions on the coarse mesh. We therefore choose to also compare the multiscale methods with a state-of-the-art upscaling method – the adaptive local–global upscaling method, which may be viewed as a multiscale method when coupled with a mass-conservative downscaling procedure. We investigate the properties of all four methods through a series of numerical experiments designed to reveal differences with regard to accuracy and robustness. The numerical experiments reveal particular problems with some of the methods, and these will be discussed in detail along with possible solutions. Next, we comment on implementational aspects and perform a simple analysis and comparison of the computational costs associated with each of the methods. Finally, we apply the three multiscale methods to a dynamic two-phase flow case and demonstrate that high efficiency and accurate results can be obtained when the subgrid computations are made part of a preprocessing step and not updated, or updated infrequently, throughout the simulation. The research is funded by the Research Council of Norway under grant nos. 152732 and 158908.  相似文献   

12.
We present a network flow model to compute transport, through a pore network, of a compositional fluid consisting of water with a dissolved hydrocarbon gas. The model captures single-phase flow (below local bubble point conditions) as well as the genesis and migration of the gas phase when bubble point conditions are achieved locally. Constant temperature computational tests were run on simulated 2D and 3D micro-networks near bubble point pressure conditions. In the 2D simulations which employed a homogeneous network, negligible capillary pressure, and linear relative permeability relations, the observed concentration of CO2 dissolved in the liquid phase throughout the medium was linearly related to the liquid pressure. In the case of no gravity, the saturation of the gas phase throughout the medium was also linearly related to the liquid pressure; under gravity, the relationship became nonlinear in regions where buoyancy forces were significant. The 3D heterogeneous network model had nonnegligible capillary pressure and nonlinear relative permeability functions. While 100 % of the CO2 entered the 3D network dissolved in the liquid phase, 25 % of the void space was occupied by gas phase and 47 % of the CO2 exiting the outlet face did so via the gaseous phase after 500 s of simulation time.  相似文献   

13.
The aim of upscaling is to determine equivalent homogeneous parameters at a coarse-scale from a spatially oscillating fine-scale parameter distribution. To be able to use a limited number of relatively large grid-blocks in numerical oil reservoir simulators or groundwater models, upscaling of the permeability is frequently applied. The spatial fine-scale permeability distribution is generally obtained from geological and geostatistical models. After upscaling, the coarse-scale permeabilities are incorporated in the relatively large grid-blocks of the numerical model. If the porous rock may be approximated as a periodic medium, upscaling can be performed by the method of homogenization. In this paper the homogenization is performed numerically, which gives rise to an approximation error. The complementarity between two different numerical methods – the conformal-nodal finite element method and the mixed-hybrid finite element method – has been used to quantify this error. These two methods yield respectively upper and lower bounds for the eigenvalues of the coarse-scale permeability tensor. Results of 3D numerical experiments are shown, both for the far field and around wells.  相似文献   

14.
In subsurface flow modeling, compositional simulation is often required to model complex recovery processes, such as gas/CO 2 injection. However, compositional simulation on fine-scale geological models is still computationally expensive and even prohibitive. Most existing upscaling techniques focus on black-oil models. In this paper, we present a general framework to upscale two-phase multicomponent flow in compositional simulation. Unlike previous studies, our approach explicitly considers the upscaling of flow and thermodynamics. In the flow part, we introduce a new set of upscaled flow functions that account for the effects of compressibility. This is often ignored in the upscaling of black-oil models. In the upscaling of thermodynamics, we show that the oil and gas phases within a coarse block are not at chemical equilibrium. This non-equilibrium behavior is modeled by upscaled thermodynamic functions, which measure the difference between component fugacities among the oil and gas phases. We apply the approach to various gas injection problems with different compositional features, permeability heterogeneity, and coarsening ratios. It is shown that the proposed method accurately reproduces the averaged fine-scale solutions, such as component overall compositions, gas saturation, and density solutions in the compositional flow.  相似文献   

15.
We consider the slightly compressible two-phase flow problem in a porous medium with capillary pressure. The problem is solved using the implicit pressure, explicit saturation (IMPES) method, and the convergence is accelerated with iterative coupling of the equations. We use discontinuous Galerkin to discretize both the pressure and saturation equations. We apply two improvements, which are projecting the flux to the mass conservative H(div)-space and penalizing the jump in capillary pressure in the saturation equation. We also discuss the need and use of slope limiters and the choice of primary variables in discretization. The methods are verified with two- and three-dimensional numerical examples. The results show that the modifications stabilize the method and improve the solution.  相似文献   

16.
Large-scale flow models constructed using standard coarsening procedures may not accurately resolve detailed near-well effects. Such effects are often important to capture, however, as the interaction of the well with the formation can have a dominant impact on process performance. In this work, a near-well upscaling procedure, which provides three-phase well-block properties, is developed and tested. The overall approach represents an extension of a recently developed oil–gas upscaling procedure and entails the use of local well computations (over a region referred to as the local well model (LWM)) along with a gradient-based optimization procedure to minimize the mismatch between fine and coarse-scale well rates, for oil, gas, and water, over the LWM. The gradients required for the minimization are computed efficiently through solution of adjoint equations. The LWM boundary conditions are determined using an iterative local-global procedure. With this approach, pressures and saturations computed during a global coarse-scale simulation are interpolated onto LWM boundaries and then used as boundary conditions for the fine-scale LWM computations. In addition to extending the overall approach to the three-phase case, this work also introduces new treatments that provide improved accuracy in cases with significant flux from the gas cap into the well block. The near-well multiphase upscaling method is applied to heterogeneous reservoir models, with production from vertical and horizontal wells. Simulation results illustrate that the method is able to accurately capture key near-well effects and to provide predictions for component production rates that are in close agreement with reference fine-scale results. The level of accuracy of the procedure is shown to be significantly higher than that of a standard approach which uses only upscaled single-phase flow parameters.  相似文献   

17.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented.  相似文献   

18.
The Fully Implicit Method (FIM) is often the method of choice for the temporal discretization of the partial differential equations governing multiphase flow in porous media. The FIM involves solving large coupled systems of nonlinear algebraic equations. Newton-based methods, which are employed to solve the nonlinear systems, can suffer from convergence problems—this is especially true for large time steps in the presence of highly nonlinear flow physics. To overcome such convergence problems, the time step is usually reduced, and the Newton steps are restarted from the solution of the previous (converged) time step. Recently, potential ordering and the reduced-Newton method were used to solve immiscible three-phase flow in the presence of buoyancy and capillary effects (e.g., Kwok and Tchelepi, J. Comput. Phys. 227(1), 706–727 9). Here, we improve the robustness of the potential-based ordering method in the presence of gravity. Furthermore, we also extend this nonlinear approach to interphase mass transfer. Our algorithm deals effectively with mass transfer between the liquid and gas phases, including phase disappearance (e.g., gas going back in solution) and reappearance (e.g., gas coming out of solution and forming a separate phase), as a function of pressure and composition. Detailed comparisons of the robustness and efficiency of the potential-based solver with state-of-the-art nonlinear/linear solvers are presented for immiscible two-phase (Dead-Oil), Black-Oil, and compositional problems using heterogeneous models. The results show that for large time steps, our nonlinear ordering-based solver reduces the number of nonlinear iterations significantly, which leads to gains in the overall computational cost.  相似文献   

19.
One of the driving forces in porous media flow is the capillary pressure. In standard models, it is given depending on the saturation. However, recent experiments have shown disagreement between measurements and numerical solutions using such simple models. Hence, we consider in this paper two extensions to standard capillary pressure relationships. Firstly, to correct the nonphysical behavior, we use a recently established saturation-dependent retardation term. Secondly, in the case of heterogeneous porous media, we apply a model with a capillary threshold pressure that controls the penetration process. Mathematically, we rewrite this model as inequality constraint at the interfaces, which allows discontinuities in the saturation and pressure. For the standard model, often finite-volume schemes resulting in a nonlinear system for the saturation are applied. To handle the enhanced model at the interfaces correctly, we apply a mortar discretization method on nonmatching meshes. Introducing the flux as a new variable allows us to solve the inequality constraint efficiently. This method can be applied to both the standard and the enhanced capillary model. As nonlinear solver, we use an active set strategy combined with a Newton method. Several numerical examples demonstrate the efficiency and flexibility of the new algorithm in 2D and 3D and show the influence of the retardation term. This work was supported in part by IRTG NUPUS.  相似文献   

20.
The Fully Implicit method (FIM) is often the method of choice for the temporal discretization of the partial differential equations governing multiphase flow in porous media. The FIM involves solving large coupled systems of nonlinear algebraic equations. Newton-based methods, which are employed to solve the nonlinear systems, can suffer from convergence problems—this is especially true for large time steps in the presence of highly nonlinear flow physics. To overcome such convergence problems, the time step is usually reduced, and the Newton steps are restarted from the solution of the previous (converged) time step. Recently, potential ordering and the reduced-Newton method were used to solve immiscible three-phase flow in the presence of buoyancy and capillary effects (e.g., Kwok and Tchelepi, J. Comput. Phys. 227(1), 706–727 2007). Here, we improve the robustness of the potential-based ordering method in the presence of gravity. Furthermore, we also extend this nonlinear approach to interphase mass transfer. Our algorithm deals effectively with mass transfer between the liquid and gas phases, including phase disappearance (e.g., gas going back in solution) and reappearance (e.g., gas coming out of solution and forming a separate phase), as a function of pressure and composition. Detailed comparisons of the robustness and efficiency of the potential-based solver with state-of-the-art nonlinear/linear solvers are presented for immiscible two-phase (Dead-Oil), Black-Oil, and compositional problems using heterogeneous models. The results show that for large time steps, our nonlinear ordering-based solver reduces the number of nonlinear iterations significantly, which leads to gains in the overall computational cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号