首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
通过对云贵高原西北部鹤庆钻孔古湖相沉积岩芯的粒度、碳酸盐含量和烧失量等指标的综合分析、研究,重建了鹤庆盆地2.78 Ma以来的古环境演化过程.岩芯磁性地层表明,鹤庆湖盆形成于约2.78 Ma.环境代用指标的综合分析显示:鹤庆盆地2.78 Ma以来有过三次大的环境转变,即2.65 Ma鹤庆湖盆积水成湖,1.55 Ma、0.99 Ma左右山盆高差两次加大,这分别与青藏运动B幕、C幕和昆黄运动耦合.  相似文献   

2.

Sediments shed from the northern margin of the Tibetan Plateau, the Qilian Mountains, are widely deposited in the foreland basin, the Jiuxi Basin, archiving plenty of information about the mountain surface uplift and erosion history. The Laojunmiao section, 1960 m thick, representing the upper sequence of the Cenozoic basin sediments, is paleomagnetically dated to about 13-0 Ma BP. Detailed sedimentary study of this sequence has revealed five sedimentary facies associations which determine four stages of sedimentary environment evolution. They are: (I) the half-deep lake system before 12.18 Ma BP, (II) the shallow lake system between 12.18 and 8.26 Ma BP, (III) the fan delta dominated sedimentary system in dry climate between 8.26 and 6.57 Ma BP, and (IV) alluvial fan system since 6.57 Ma BP. The associated mountain erosion and uplift are suggested to have experienced three phases, that is, tectonic stable (13-8.26 Ma BP), gradual uplift (8.26-<4.96 Ma BP), and rapid intermittent uplift (>3.66-0 Ma BP). The uplift at ∼3.66 Ma BP is of great importance in tectonics and geomorphology. Since then, tectonic uplift and mountain building have been accelerated and become strong intermittent. At least three significant tectonic events took place with ages at <1.80-1.23, 0.93-0.84 and 0.14 Ma BP, respectively. Thus, the uplift of the northern Tibetan Plateau is a complex process of multiple phases, unequal speed and irregular movements.

  相似文献   

3.
L&#;  Houyuan  Wang  Sumin  Wu  Naiqin  Tong  Guobang  Yang  Xiangdong  Sheng  Caiming  Li  Shijie  Zhu  Liping  Wang  Luo 《中国科学:地球科学(英文版)》2001,44(1):292-300

A new pollen record from the lake of Co Ngoin in the central Tibetan Plateau provides information on the vegetation and climate changes during the last 2.8 Ma. Seven major significant changes in pollen associations indicate the processes of vegetation change and possible tectonic uplifts. The seven changes in vegetation succession include a temperate montane conifer and broad-leaved mixed forest, cold temperate montane dark conifer forest, alpine shrub-meadow and alpine desert, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine meadow, and alpine desert and meadow. The pollen record provides the evidence of at least five times tectonic uplifts occurring at about 2.58 Ma, 1.87 Ma, 1.17 Ma, 0.83 Ma, and 0.3 Ma ago, respectively. Before 0.8 Ma, this region maintained the altitude below 4000 m a.s.l. Larger amplitude of uplift occurring at about 0.8 Ma ago enforced the plateau rising into cryosphere, shaping the basic topographic pattern of modern plateau. The major successions in vegetation of this area were largely controlled by stepwise uplift of the Tibetan Plateau.

  相似文献   

4.
By observing, measuring the fluvial sediment grain size of mid-western segment of the Qilianshan Range and studying the correlation between the grain size and uplift of the plateau, we model the correlation. These models are applied to the Laojunmiao section and the process curve of the uplift of the northern Tibetan Plateau against age from 8.35 Ma is illustrated here. The process curve shows that the northern Tibetan Plateau surface has uplifted from the mean altitude of 900–3700 m since 8.35 MaBP. From 8.35 to 3.1 MaBP, the Tibetan Plateau uplifted slowly, uplifted amplitude is small, the total range is 420 m. From 3.1 MaBP up to now, the Tibetan Plateau uplifted tempestuously, showing that the uplift accelerated obviously later. It uplifted totally 2400 m. About 0.9 Ma ago, the northern Tibetan Plateau surface had uplifted to over 3000 m a.s.l., showing that the Tibetan Plateau surface had reached the cryosphere; and the mountain peaks had uplifted to more than 4000 m altitude, suggesting that there was a glacier developed on the mountains.  相似文献   

5.
Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks that span much of the Cenozoic and has great potential for further studying this issue. However, these strata were poorly dated. This paper presents a chronological study of the 145 m thick and horizontally-distributed lacustrine sequence using paleomagnetic method as well as a K-Ar dating of the underlying volcanic rocks. Based on these dating results, a chronostratigraphic framework and the basin-developmental history have been established for the past 15 Ma, during which three tectonic stages are identified. The period of 15-8.1 Ma is characterized by intense volcanic activities involving at least three major eruptions. Subsequently, the basin came into a tectonically quiescent period and a lacustrine sedimentary sequence was developed. Around 2.5 Ma, an N-S fault occurred across the southern margin of the basin, leading to the disappearance of the lake environment and the development of the Oiyug River. The Gyirong basin on northern slope of the Himalayas shows a similar basin developmental history and thus there is a good agreement in tectonic activities between the Himalayan and Gangdise orogenic belts. Therefore, the tectonic evolution stages experienced by the Oiyug Basin during the past 15 Ma could have a regional significance for southern Tibet. The chronological data obtained from this study may provide some constraints for further studies with regard to the tectonic processes and environmental changes in southern Tibetan Plateau.  相似文献   

6.
A series of independent faulted basins developed in the present middle reaches of the Yellow River during late Cenozoic, among which the Sanmen Lake Basin is located in the east edge of the Loess Plateau, a transitional zone between the second and third macromorphological step of China. The thick strata of the Sanmen Group deposited in the large basin. The Sanmen Group is a perfect place for the study on paleoenvironmental change, tectono-climatic cycles as well as the formation and evolution of the Yellow River. In this paper, the paleoenvironmental changes, regional tectonic movement and the evolutionary process of the Sanmen Lake Basin during the past 5 Ma were reconstructed based on the analysis of paleomagnetic stratigraphy, pollen, TOC and carbonate content from the Huangdigou outcrop near the Sanmenxia Reservoir, Pinglu County, Shanxi Province. The sedimentary records from the outcrop indicate that the basin was first formated by fault activity at about 5.4 MaBP, and after the strong tectonic movement at 3.6 MaBP the lake enlarged and the rainfall of summer monsoon increased. There was no great climatic transition near 2.6 MaBP, corresponding to the bottom age of loess in the Loess Plateau. After Olduvai event (about 1.77 MaBP) the Picea and Abies were presented in the sediments, which indicates a colder climate. The tectonic movement at 1.2 MaBP caused the light angular discordance between the upper and lower Sanmen Group. The sedimentary records show a cold and wet climate during the prosperous periods of loess accumulation such as L15, L9, L6. The tectonic intensification periods of the Sanmen Basin correspond with the tectonic movements in the Qinghai-Xizang Plateau chronologically. The earliest age of the outflow from the Paleo-Sanmen Lake or the partly cutting off of the Sanmenxia Gorge was about 0.41- 0.35 MaBP. The age of cutting thoroughly the Sanmenxia Gorge by the Yellow River and the disappearance of the Paleo-Sanmen Lake was about 0.15 MaBP, which symbolized the formation of the present Yellow River and had an important influence on the environmental and morphological evolution in the middle and lower reaches of the Yellow River.  相似文献   

7.
Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.  相似文献   

8.

Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.

  相似文献   

9.
Carbonates in loess-red clay sequences consist mainly of calcite and dolomite. The EDTA analysis of carbonates in different size fractions and magnetic susceptibility reveal that calcite is a sensitive index of summer monsoon. The chemical analysis of carbonates and calcite from an 8.1 Ma loess-red clay sequence at Chaona on the Chinese central Loess Plateau shows that the evolution of the Asian summer monsoon experienced four stages, namely 8.1―5.5 Ma, 5.5―2.8 Ma, 2.8―1.5 Ma and 1.5―0 Ma, with increasing intensification and fluctuation, suggesting a possible combining impacts of uplift of the Tibetan Plateau and global changes on the Asian summer monsoon.  相似文献   

10.

Based on paleomagnetic measurements and morphostratigraphy of red bed/clay sequences from pediments of the Liupan Shan and the Longdong Basin, the following results are revealed. The red bed/clay sediments became to accumulate at around 8.1 MaBP, which implied that the plantation surface developed since Late Cretaceous was broken by active fault, and its development was terminated. The Liupan Shan began to slightly uplift. The Liupan Shan experienced a small-scale uplift around 5.2 MaBP, inferred from the appearance of fine gravel sediments at that time. Consequently, a pediment was developed. The Liupan Shan accelerated uplift since about 3.8 MaBP at a large scale, which caused the deep incision of the rivers and the termination of fluvial and lacustrine deposition. Meanwhile, typical eolian red clay appeared since then. This uplift process is well correlated and in response to that of the Tibetan Plateau and the mountains around it.

  相似文献   

11.
通过对南海北部陆坡下部ODPl148站位沉积物中陆源矿物组分的含量、堆积速率、粒度、石英氧同位素及石英扫描电镜的分析,探讨南海沉积演化及其构造响应.结果显示,根据综合指标的变化特征可将南海海盆的沉积演化划分为5个阶段:扩张初期(34~28.5 Ma)、构造活动剧烈期(28.5~23 Ma)、构造活动减弱期(23~16....  相似文献   

12.

Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are >11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  相似文献   

13.
The apparent ages of samples are obtained from fission track dating of apatite samples collected from the fault zones in Mabian area, southern Sichuan Province. In addition, thermal history is simulated from the obtained data by applying AFT Solve Program, to acquire the thermal evolution history of the samples. The result shows that tectonically the Mabian area was relatively stable between 25 and 3 Ma, compared to the inner parts and other marginal areas of the Tibetan Plateau. The studied area had little response to the rapid uplift events that occurred for several times in the Tibetan Plateau during 25-3 Ma. The latest thermal event related to the activity of the Lidian fault zone (about 8 Ma ) is later than that of the Ebian fault zone (18-15 Ma ) to the west, indicating to some extent that the evolution of fault activity in the Mabian area has migrated from west to east. The latest extensive tectonic uplift occurred since about 3 Ma. As compared with the Xianshuihe fault zone, the Mabian area is closer to the east- ern margin of the plateau, while the time of fast cooling event in this area is later than that in the southeast segment of the Xianshuihe fault zone (3.6-3.46 Ma ). It appears to support the assumption of episodic uplift and stepwise outward extension of the eastern boundary of the Tibetan Plateau in late Cenozoic.  相似文献   

14.

Ganzi loess represents the oldest Tibetan loess, its formation is the key to determining the readjustment of Tibetan atmospheric circulation and the relationship between Tibetan uplift and global climatic change. Detailed magnetostratigraphic study shows that the Ganzi loess was formed at about 1.13 MaBP. It also reveals that there are two notable climatic events occurring in 0.95–0.92 Ma and 0.65–0.5 Ma respectively. The both demonstrate that the Tibetan atmospheric circulation was readjusted and the Tibetan Plateau entered the cryosphere at 21.13 Ma, and the Tibetan glaciation might reach its maximum at ∼0.65–0.5 Ma.

  相似文献   

15.
甜水海钻孔TS95若干地球化学指标的非线性分析与意义   总被引:1,自引:0,他引:1  
应用关联维分析和R/S分析对西昆伦甜水海孔TS95的4项指标(FeO,Fe2O3,Fe2O3/FeO和有机碳)进行分析,发现它们存在明显的混沌特征和Hurst现象,4项指标的混沌吸引子分别为:FeO-2.8;Fe2O3-3.2;Fe2O/FeO-2.9;有机碳2.5,饱和嵌入维数为5到6,表明控制该地区气候环境演化的动力系统是由有限维数确定的混沌系统,构筑该系统所需变量至少3到4个,最多5到6个,这种体上与深海氧同位素比较接近,与黄土剖面一些指标差异较大,4项指标折Hurst指数(FeO-0.85;Fe2O3-0.76;Fe2O3/FeO-0.65;有机碳-0.74)显示该地区气候环境演化存在明显的持续性成分,这与早期的研究一致,很可能与青藏高原的构造抬升有关,表明除了全球性气候环境波动背景外,局域性因素,如肝藏高原构造抬升和未海地区水系变迁,都会在各种气候环境演化的替代性指标上有所反映。4项指标Hurst指数的差异可能反映FeO容易迁移,受到了流域水系变化的影响,因而有机碳和Fe2O3可能是反映这种环境演化持续性分更好的指标。  相似文献   

16.
塔里木盆地的高分辨率沉积记录对于理解青藏高原隆升、亚洲内陆干旱化乃至全球气候变化至关重要.建立可靠的地层年代标尺对于研究塔里木盆地晚新生代沉积环境演化、构造运动及古气候变化具有重要意义.本文对塔里木盆地东北缘库尔勒地区的两个全取心钻孔ZK3(深500 m)、ZK5(深300 m)进行详细的磁性地层学研究,结果表明,ZK3孔中更新统底界为54.8 m,下更新统底界为167.0 m,上新统底界为432.0 m,钻孔底部年龄约为6.2 Ma,属上中新统上部;ZK5孔中更新统底界为64.7 m,下更新统底界为241.5 m,钻孔底部年龄约为3.2 Ma,属上上新统.基于上述磁性地层年代标尺,通过沉积速率分析发现ZK3孔在3.0—3.6 Ma之间沉积速率明显增大,反映了塔里木盆地北部天山在此期间的快速隆升.通过东西部多个盆地地质剖面沉积速率的对比分析发现,这期构造活动在区域上具有准同期活动特征,在时代上与晚中新世以来青藏高原快速隆升的时代一致,可能与青藏高原的隆升扩展效应有关.  相似文献   

17.
Jia  Yulian  Shi  Yafeng  Wang  Sumin  Jiang  Xuezhong  Li  Shijie  Wang  Aijun  Li  Xusheng 《中国科学:地球科学(英文版)》2001,44(1):301-315

Since 40 kaBP, the current endorheism on the Tibetan Plateau had experienced at least four lake-explanding events, at 40-28 kaBP, 19-15 kaBP, 13-11 kaBP, 9.0-5.0 kaBP, respectively. The 40-28 kaBP and 9.0-5.0 kaBP lake-expanding events, corresponding to the global warming periods, were mainly determined by the abundant summer monsoon rainfall brought by strong Indian monsoon, aroused by enhanced solar radiation at earth orbital precessional cycle. The 40-28 kaBP lake-expanding event, also called the great lake period or the pan-lake period, for several great lake groups had come into being by the interconnection of the presently isolated and closed lake catchments. The total lake area over the Tibetan Plateau was estimated at least up to 150000 km2, 3.8 times of the present, and the lake supply coefficients were about 3–10. The 9.0-5.0 kaBP lake-expanding, with a total lake area of 68000 km2, less than the above mentioned reflected the Indian monsoon rainfall less than that of 40-28 kaBP. The expanded lakes at 19-15 kaBP and 13-11 kaBP, distributed in these basins with more or less existing glacial, indicated plenty of glacial meltwater discharged to balance evaporation on expansive lake surface. At the same time, the enhanced precipitation by the westerlies at 19-15 kaBP and by Indian monsoon at 13-11 kaBP plays an important role in maintaining the high lake level. Heinrich events greatly affected the evolution of climate system over the Tibetan Plateau, and thus gave a clear boundary of the high lake level change in the late Quaternary.

  相似文献   

18.
Hui-Ping  Zhang  Shao-Feng  Liu  Nong  Yang  Yue-Qiao  Zhang  Guo-Wei  Zhang 《Island Arc》2006,15(2):239-250
Abstract   The Minshan Mountain and adjacent region are the major continental escarpments along the eastern Tibetan Plateau. The Minjiang drainage basin is located within the plateau margin adjacent to the Sichuan Basin. Based on the analysis of the digital elevation model (DEM) acquired by the Shuttle Radar Topography Mission (SRTM), we know that the Minjiang drainage basin has distinct geomorphic characteristics. The regular increasing of local topographic relief from north to south is a result of the Quaternary sediment deposition within the plateau and the holistic uplift of the eastern margin of the Tibetan Plateau versus the Sichuan Basin. Results from DEM-determined Minjiang drainage sub-basins and channel profiles show that the tributaries on the opposite sides are asymmetric. Lower perimeter and area of drainage sub-basins, total channel length and bifurcation ratio within eastern flank along the Minjiang mainstream are the result of the Quaternary differential uplift of the Minshan Mountain region. Shorter stream lengths and lower bifurcation ratio might be the indications of the undergrowth and newborn features of these eastern streams, which are also representative for the eastern uplift of the Minshan Mountain.  相似文献   

19.
The surface uplift history of the Tibetan Plateau has provided a key boundary criterion for various geological, climatic, and environmental events since the Cenozoic. The paleoelevation history of the plateau is organically associated with interactions amongst deep geodynamics, earth surface processes, and climate change. Understanding of plateau uplift history has been advanced by the development of a number of paleoaltimetries and their application to studies of the Tibetan Plateau: the paleogeomorphic scenario for the Early Eocene Tibetan Plateau is thought to include two high mountains, the ca. 4500 m Gangdese Mountains to the south, and the ca. 5000 m Qiangtang Center Watershed Mountains to the north. Between these ranges, a low-elevation basin (ca. 2500 m) is thought to have been present. The Himalayas in the southern Tibetan Plateau was close to sea level at this time, while the Hoh Xil Basin in the north reached an elevation of no more than 1500 m. Thus, the so-called “Roof of the World” Tibetan Plateau formed subsequent to the Miocene. Nevertheless,, the uplift histories of the different terranes that comprise this plateau currently remain unclear, which constrains the uplift history reconstruction of the entire Tibetan Plateau. Additional paleoelevation data from different areas, obtained using multi-paleoaltimeters, is required to resolve the forms and processes of Tibetan Plateau uplift and extension.  相似文献   

20.
The tectonic-sedimentary cycles and environmental evolution in Southwest Monsoon area since 2.78 Ma were reconstructed, based on the analyses of lithology, grain size, carbonate content, loss-on-ignition (LOI) and pollen in a 737.72 m sediment core from the Heqing Basin, China. The results indicated that the lake basin was formed in about 2.78 Ma. Continuous lacustrine sediment was preserved since 2.65 Ma. Three stages of tectonic-sedimentary cycle were revealed, which were 2.78–1.55, 1.55–0.99 and 0.99–0 Ma. The environmental evolution in Heqing area was influenced by uplift of the Qinghai-Tibetan Plateau, the resulting variation of Southwest Monsoon and the earth orbital-scale periodicity. Supported by the Key Projects of the National Natural Science Foundation of China (Grant Nos. 40331003 and 40625007)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号