首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Marine Geology》1999,153(1-4):177-197
Drilling of deep-water post-Messinian sedimentary sequences by ODP Legs 160 and 161 in the Mediterranean Sea has shown that occurrence of organic-carbon-rich sapropels and sapropel-like sediments extends from the Levantine Basin westward into the Alboran Basin. In the eastern Mediterranean, sapropel deposition started in the Early Pliocene, whereas in the Western Basin the onset of sapropel formation occurred later, in the Early Pleistocene. Precessional cycles are apparently the primary external forcing for sapropel formation. Nevertheless, the pattern of sapropel occurrence suggests that the precessional influence is modulated by the glaciation cycles. Large differences were observed in the organic carbon contents of sapropels recovered in the eastern and western Mediterranean. Correspondence between organic carbon contents, Rock-Eval hydrogen index values and elemental C/N ratios indicate that both variations in the production and preservation of marine organic matter have led to the accumulation of high amounts of organic matter in sapropels. Molecular organic geochemical compositions of sapropels from the eastern Mediterranean further confirm that the major fraction of organic matter in sapropels is derived from marine algal sources and has undergone variable oxidation. Enhanced marine productivity and improved preservation of organic matter is central to sapropel formation. Accumulation of increased amounts of land-derived material at times of sapropel formation is also evidenced, supporting the hypothesis of significant periodic freshwater discharges.  相似文献   

2.
Numerous sapropels and sapropelic strata from Upper Pliocene and Pleistocene hemipelagic sediments of the Tyrrhenian Sea show that intermittent anoxia, possibly related to strongly increased biological productivity, was not restricted to the eastern Mediterranean basins and may be a basin-wide result of Late Pliocene-Pleistocene climatic variability. Even though the sapropel assemblage of the Tyrrhenian Sea clearly originates from multiple processes such as deposition under anoxic conditions or during spikes in surface water productivity and lateral transport of organic-rich suspensates, many “pelagic sapropels” have been recognized. Stratigraphic ages calculated for the organic-rich strata recovered during ODP Leg 107 indicate that the frequency of sapropel formation increased from the lowermost Pleistocene to the base of the Jaramillo magnetic event, coinciding with a period when stable isotope records of planktonic foraminifera indicate the onset of climatic cooling in the Mediterranean. A second, very pronounced peak in sapropel formation occurred in the Middle to Late Pleistocene (0.73-0.26 Ma). Formainifers studied in three high-resolution sample sets suggest that changes in surface-water temperature may have been responsible for establishing anoxic conditions, while salinity differences were not noted in the faunal assemblage. However, comparison of sapropel occurrence at Site 653 with the oxygen isotopic record of planktonic foraminifers established by Thunell et al. (Proc. ODP, Sci. Results 107, 1990) indicates that sapropel occurrences coincide with negative δ18O excursions in planktonic foraminifers in thirteen of eighteen sapropels recognized in Hole 653A. A variant of the meltwater hypothesis accepted for sapropel formation in the Late Pleistocene eastern Mediterranean may thus be the cause of several “anoxic events” in the Tyrrhenian as well. Model calculations indicate that the amount of oxygen advection from Western Mediterranean Deep Water exerts the dominant control on the oxygen content in deep water of the Tyrrhenian Sea. Inhibition of deep-water formation in the northern Adriatic and the Balearic Basin by increased meltwater discharge and changing storm patterns during climatic amelioration may thus be responsible for sapropel formation in the Tyrrhenian Sea.  相似文献   

3.
CaCO3 and total organic carbon concentrations, organic matter C/N and carbon isotope ratios, and sediment accumulation rates in late Quaternary sediments from DSDP Site 594 provide information about glacial–interglacial variations in the delivery of organic matter to the Chatham Rise offshore of southeastern New Zealand. Low C/N ratios and nearly constant organic δ13C values of −23‰ indicate that marine production dominates organic matter supply in both glacial and interglacial times during oxygen isotope stages 1 through 6 (0–140 ka) and 17 through 19 (660–790 ka). Increased organic carbon mass accumulation rates in isotope stages 2, 4, 6, and 18 record enhanced marine productivity during glacial maxima. Excursions of organic δ13C values to ca. −29‰ in portions of isotope stage 2 suggest that the local concentration of dissolved CO2 was occasionally elevated during the last glacial maximum, probably as a result of short periods of lowered sea-surface temperature. Dilution of carbonates by clastic continental sediment generally increases at this location during glacial maxima, but enhanced delivery of land-derived organic matter does not accompany the increased accumulation of clastic sediments.  相似文献   

4.
Organic carbon (OC) and nitrogen (N) contents and δ13C and δ15N values in total organic matter (OM) were measured in sub-surface sediments (0–30 cm sub-bottom) from 21 cores raised from the Laurentian Channel of the Gulf of St. Lawrence and the Labrador Sea, to document OM fluxes and storage along the eastern Canadian margin. Storage rates as high as 2.5 g m−2 yr−1 for OC and 0.2 g m−2 yr−1 for N are observed in the Laurentian Channel, suggesting that the shelf plays a significant role in terms of OM storage (from 1 to 2% of the primary production). Based on the isotopic composition of the essentially marine OM of the Labrador Sea (δ13C/V-PDB=−21.9±0.4‰; δ15N/AIR=7.6±0.6‰; n=12), there is no isotopic evidence for a significant relative input of terrestrial OM along the Laurentian Channel (δ13C/V-PDB=−21.9±0.4‰; δ15N/AIR=8.0±0.9‰; n=10), either due to high relative fluxes of marine OM and/or to the trapping of continental OM in the estuary and upstream. High storage rates of OM are also observed on the continental rise of the Labrador Sea (as high as 1.1 g C m−2 yr−1 and 0.09 g N m−2 yr−1). They contrast with one order of magnitude lower rates on the slope, due to low sedimentation rates (SR) and sediment winnowing by the Western Boundary Undercurrent (WBUC). Reduced early diagenetic alteration of OM is observed, particularly in the Laurentian Channel. It results in discrete (i) losses of OC and N, (ii) shifts in C/N ratios, suggesting preferential removal of N-bearing OM also highlighted by losses in total hydrolysable amino acids (HAA). In the Labrador Sea slope records, due to low SR, OM concentration changes linked to long term temporal variations may superimpose on these diagenetic trends, and some influence of the WBUC is noticeable.  相似文献   

5.
Mid-Miocene (Langhian; ∼15.4 Ma) sapropels formed within the easternmost Mediterranean basin, now uplifted in northern Cyprus. These sapropels represent the oldest known sapropels in a predominantly marl succession. Six well-developed sapropels were studied. Strontium isotope dating of twelve samples gave a preferred age of ∼15.4 Ma (Langhian); i.e. during the final phases of the Middle Miocene Climatic Optimum (MCO). The age of the best-preserved nannofossil assemblage (Langhian) is close to the strontium ages. The Langhian strontium ages are preferred over an alternative early Serravallian age for less well-preserved nannofossil assemblages. Total organic carbon contents in the sapropels reach maximum values of 3.9 wt.%. Relative to the host marls, the sapropels show enrichments in terrigenous-derived minerals and related major and trace elements. Sedimentological evidence indicates that the terrigenous sediments were eroded from the northern borderlands of the deep-water basin under warm, humid conditions. High fresh-water run-off from surrounding landmasses is likely to have promoted a low-salinity lid to the eastern Mediterranean deep-water basin. This, in turn, would have restricted deep-water ventilation and promoted widespread anoxia. Exceptionally high concentrations of chalcophile elements (e.g. Cu, Ni and Zn) are consistent with anoxic conditions. Abundant nutrient-rich fresh-water input is also likely to have stimulated siliceous productivity (although any siliceous microfossils did not survive diagenesis). A significant role for diagenesis in sapropel formation is indicated by the mobilisation of Ba from sapropels to marl directly beneath. Orbitally induced dry–wet oscillation, the mechanism invoked to explain the Pliocene to Holocene sapropels, apparently was already in place during the latest stages of the MCO when the Langhian sapropels accumulated. These sapropels accumulated immediately after the Middle Miocene closure of the Southern Neotethys when the Eastern Mediterranean Sea apparently became more sensitive to orbital cyclicity. The development of a semi-enclosed deep-water basin was, therefore, a prerequisite for sapropel formation.  相似文献   

6.
A combined study of lithological, geochemical and physical sediment properties is reported from a completely laminated S5 sapropel, recovered in three gravity cores (M40-4 SL67, M51-3 SL103, M51-3 SL104) from the Pliny Trench region of the eastern Mediterranean. The thickness of the studied sapropel S5 varies between 85 and 91 cm and tops most S5-sapropels in the Mediterranean. Based on optical features like color and thickness of laminae, the sapropels were subdivided into thirteen distinct lithostratigraphic zones. These zones, as well as the finer layering pattern within them, could be followed exactly among the three cores, indicating that the processes responsible for this variation acted at least on a regional scale. The sapropel sediment is characterized by exceptionally high porosity, which is strongly correlated with Si/Ca. This relationship implies that the sapropel is in essence an organic-matter rich diatomite and its exceptional thickness can be explained by preservation of diatoms forming a loosely packed sediment fabric. Compared to other S5 sapropels, the preservation of diatoms has apparently led to a twofold increase in the thickness of the sapropel layer. Relative abundances of 10 elements were determined at ultra-high resolution (0.2 mm) by XRF-scanner over the complete length of each sapropel including several cm of enclosing marl. An analysis of the chemical data indicates that the lowermost 13 cm of the sapropel is chemically more similar to the underlying marl and that the sediment chemistry shows different signals at different scales. The strongest pattern is the contrast between the sapropel and the surrounding marl, which is accentuated in elements indicative for redox conditions as well as terrigenous sediment input and productivity. Within the sapropel, a mm- to cm-scale layering is observed. The abundances of many elements are systematically linked to the pattern of these layers, indicating a common origin, related to productivity and/or terrigenous sediment and/or redox conditions. This pattern indicates a link to a regional climatic process, making the S5 sapropel horizon in M40-4 SL67, M51-3 SL103 and M51-3 SL104 a potential high-resolution archive of climatic variability during the last interglacial in the Mediterranean Sea and its adjacent landmasses.  相似文献   

7.
《Marine Geology》1999,153(1-4):103-116
Diagenetic dissolution of magnetic minerals has been widely observed in organic-rich sediments from many environments. Organic-rich sediments from the eastern Mediterranean Sea (sapropels), recovered during Leg 160 of the Ocean Drilling Program, reveal a surprising catalogue of magnetic properties. Sapropels, from all sites studied across the eastern Mediterranean Sea, are strongly magnetic and the magnetization is directly proportional to the organic carbon content. The magnetization of the sapropels is dominated by a low-coercivity, probably single domain magnetic mineral (with an inverse magnetic fabric) that exhibits a clear decay in magnetic properties when exposed to air. During heating, the magnetic particles irreversibly break down between 360 and 400°C. The contrast between the magnetic properties of sapropels and surrounding sediments is marked, with remanence intensities of sapropels often being more than three orders of magnitude higher than those of underlying sediments. The contrast between the magnetic properties of sapropels and the surrounding sediments is apparently controlled by non-steady-state diagenesis: sulphate-reducing conditions dominated during sapropel deposition, while overlying sediments were deposited under oxic conditions. The mineral responsible for the magnetic properties of sapropels is most likely to have formed under sulphate-reducing conditions that existed during times of sapropel formation. Attempts to identify this mineral have been unsuccessful, but several lines of evidence point toward an unknown ferrimagnetic iron sulphide phase. The influence of diagenesis on the magnetic properties of cyclically-deposited eastern Mediterranean sedimentary sequences suggests that magnetic parameters may be a useful proxy for diagenesis in these sediments.  相似文献   

8.
Two cores recovered in the eastern Mediterranean were analysed for major, minor and trace elements. The primary chemical composition of the sediment is different at each location, probably because the lithological sources and the relative biogenic contributions differ.

Carbonates are important for the concentration of Ca, Mg and Sr, whereas aluminosilicates determine the concentration of Si, Al, K, Li, Y and Be, and to a lesser extent that of Fe, Cr, Ti, Mg, Zn and Zr. In sapropels, organic carbon and sulphur seem to be closely related. Bromine, Mo, P, Fe, V, Cu, Zn, Co, Ni and Cr are closely associated with organic and sulphidic compounds. The concentration versus depth profile for organic carbon in two sapropels points to a rapid establishment of conditions that gave rise to sapropel formation, followed by a gradual transition back to “normal” conditions.

The primary composition is overprinted by diagenetic processes. Sulphate-reducing conditions occurred during and just after sapropel deposition. A progressive oxidation front mechanism, which became active after sapropel deposition, is responsible for additional major geochemical changes. This diagenetic phenomenon has strong implications for the chemistry of Fe, Mn, Ni, Co, Zn, Cu, Cr, V, U, As and Sb.  相似文献   


9.
New light-stable carbonate-carbon isotope and lattice-bound CO2 data from Quaternary Peru-Chile margin phosphatic nodules, crusts and pelletal grains, and from associated dolomicritic concretions, are presented, which provide constraints on the timing and mechanisms of growth of these phases in organic carbon-rich sediments. Comparison of δ13C values from carbonate fluorapatite (CFA) nodules and pelletal grains (−4.8 to 0.0‰ and −2.9 to +1.0‰ PDB, respectively) with pore-water total dissolved δ13C values from these sediments suggests early authigenic CFA precipitation from pore waters within a few centimeters of the sediment-water interface in association with suboxic to perhaps anoxic microbial degradation of organic matter. In contrast, the dolomicritic cores of nodules recovered from about 12°S display both strongly negative to positive δ13C values (−10.8 to +6.1‰) characteristic of formation deeper in the sediments in association with methanogenic and perhaps sulfate reduction microbial processes.

The amount of structural carbonate in CFA suggests that carbonate substitution generally increases as δ13C in CFA decreases, a probable consequence of increasing carbonate and accompanying charge-balancing substitutions in the CFA lattice in response to increasing pore-water carbonate ion concentrations with depth below the sediment-water interface. In one buried upward-growing nodule, decreasing CFA δ13C and increasing structural CO2 also correspond to decreasing CFA growth rates. These data suggest that in addition to other constraints such as pore-water phosphorus and fluoride availability, the lower limit of CFA precipitation in suboxic to anoxic sediments may be controlled by lattice poisoning due to excessive dissolved carbonate ion concentrations. In organic-rich Peru-Chile margin sediments this depth threshold appears to be at approximately 5–10 cm below the sediment-water interface where maximum CFA CO2 contents of about 6 Wt.% occur; in less organic-rich settings, greater depths of precipitation of CFA may be anticipated. Below this relatively shallow depth of CFA precipitation on the Peru shelf, high pore-water alkalinity and associated elevated total dissolved carbon and carbonate ion concentration apparently favor the precipitation of authigenic carbonates.  相似文献   


10.
In the last few years it has frequently been suggested that Ba is a useful indicator of paleoproductivity. The formation of some sapropels in the Eastern Mediterranean is considered to be related to, or to coincide with, periods of enhanced productivity. A high-resolution sampling study has been undertaken in order to investigate whether the Ba distribution in sapropels reflects a primary input signal or whether it has been altered by diagenetic processes.

On the basis of our results we suggest that three diagenetic stages determine the distribution of Ba. During deposition of the sapropel (stage 1) Ba is mobilized as anoxic conditions prograde. After deposition of the sapropel (stage 2), a progressive oxidation front develops. This front induces the formation of Mn and Fe enrichments and barite precipitation at the oxic/anoxic boundary. Barite precipitation is believed to be caused mainly by a rise in the porewater sulphate concentration after sulphides have been oxidized by the front.

Upon burial (stage 3), suboxic conditions develop as the oxygen becomes exhausted again. In contrast to Fe- and Mn-oxyhydroxides which dissolve and reprecipitate at higher levels, barite is preserved because dissolved sulphate is not depleted.

The interpretation of the Ba distribution in organic-rich sediment is not straightforward. Diagenetic reallocation of a primary Ba signal will possibly disturb the relationship between Ba and organic production. Consequently, one must be very cautious when invoking Ba as a paleoproductivity indicator.  相似文献   


11.
《Marine Geology》1999,153(1-4):221-237
The Quaternary climate of southern Europe (south Italy and Greece) is investigated by pollen analysis of the sapropels which were deposited in the deep eastern Mediterranean Sea during the last 1 million year (Ma). The time-scale of core KC01b in the Ionian Sea has been established by tuning its oxygen isotopic record to the ice volume model of Imbrie and Imbrie (1980). For the last 250,000 year (250 ka), the previous pollen studies and astronomical tuning have been confirmed. Sapropels were deposited under a large range of Mediterranean climates: fully interglacial, fully glacial, and intermediary, as revealed mainly by the balance between the respective pollen abundances of oak (Quercus) and sage-brush (Artemisia). The high value of the oak reveals the warm and wet climate of an Interglacial, and the high value of the sage-brush, the dry and cold climate of a Glacial. Whereas the Mediterranean climate is directly related to the variation of the high-latitude ice sheets, the deposition of sapropels is not so. In contrast with the wide climatic range, sapropels were deposited only when summer insolation in the low latitudes reached its highest peaks. However, between 250 ka and 1 Ma, that stable pattern is not yet established. Only six sapropels are observed, many expected ones do not appear, even as ghosts signalled by peaks of barium abundance, that remain after the post-deposition oxidation of organic matter. The pattern of sapropel formation in stable and direct relationship to highest insolation does not seem to apply. For five of those sapropels, neither climate extremes are observed; they mainly formed during intermediary types of Mediterranean climate. In contrast, one sapropel (and one ghost) relates to a relatively low peak of insolation, and its climate is of a unique, composite type not seen later. This might suggest an unsuspected, more complex pattern linking the formation of Mediterranean sapropels to the astronomical configuration.  相似文献   

12.
L. Vidal  T. Bickert  G. Wefer  U. R  hl 《Marine Geology》2002,180(1-4):71-85
High-resolution benthic oxygen isotope and XRF (Fe and Ca) records from Site 1085 drilled in the Mid-Cape basin (ODP Leg 175) are used to investigate global climate changes during the Late Miocene in relation to Messinian geological events. The cyclic fluctuations of the time series at Site 1085 enable us to establish a reliable chronology for the time interval 7.3–4.7 Ma. Spectral analysis of the δ18O record indicates that the 41-kyr period of orbital obliquity dominates the Late Miocene record. A global climate record was extracted from the oxygen isotopic composition of benthic foraminifera. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The time interval 7.3–6.25 Ma characterized by low-amplitude δ18O variations is followed by a period marked by maximum in the δ18O values (6.25–5.57 Ma). At about 5.56 Ma, a rapid decrease in δ18O values is documented that may reflect a warming of deep-water temperature associated with a global warming period. Comparison between the timing of the oceanic isotope events and the chronology of the Mediterranean Salinity Crisis suggest that global eustatic processes were not essential in the Mediterranean Salinity Crisis history. From our data, we infer that the global warmth documented in the Early/mid-Pliocene probably started during the Late Miocene (at 5.55 Ma). At the same time, the onset of evaporite deposition in the central basin of the Mediterranean Sea took place. Sharp changes in the sedimentation rates, mainly driven by terrigenous input at this site, are observed during the Messinian Stage.  相似文献   

13.
The nearshore shelf of the Beaufort Sea is defined by extreme physical and biological gradients that have a distinctive influence on its productivity and trophic structure. Massive freshwater discharge from the Mackenzie River, along with numerous smaller rivers and streams elsewhere along the coast, produce an environment that is decidedly estuarine in character, especially in late spring and summer. Consequently, the Beaufort coast provides a critical habitat for several species of amphidromous fishes, some of which are essential to the subsistence lifestyle of arctic native populations. Because of its low in situ productivity, allochthonous inputs of organic carbon, identifiable on the basis of isotopic composition, are important to the functioning of this arctic estuarine system. Coastal erosion and river discharge are largely responsible for introducing high concentrations of suspended sediment from upland regions into the nearshore zone. The depletion in the 13C content of invertebrate and vertebrate consumers, which drops about 4–5‰ eastward along the eastern Alaskan Beaufort Sea coast, may reflect the assimilation of this terrestrial organic matter into local food webs. In addition, the large range in 13C values of fauna collected in the eastern Beaufort (nearly 8‰) compared to the same species in the northeastern Chukchi (3‰), indicate a lower efficiency of carbon transfer between trophic levels in the eastern Beaufort. The wider spread in stable isotope values in the eastern Beaufort may also reflect a decoupling between benthic and pelagic components. Isotopic tracer studies of amphidromous fishes in the Simpson Island barrier island lagoon revealed that terrestrial (peat) carbon may contribute as much as 30–50% of their total dietary requirements. On the eastern Alaska Beaufort Sea coast, the δ13C values of arctic cod collected in semi-enclosed lagoons were more depleted, by 3–4‰, compared to fish collected in the coastal Beaufort Sea. Calculations from isotopic mixing equations indicate cod from lagoons may derive 70% of their carbon from terrestrial sources. The δ15N values of lagoon fish were also 4‰ lower than coastal specimens, reflective of the lower δ15N values of terrestrially derived nitrogen (0–1.5‰ compared to 5–7‰ for phytoplankton). The role of terrestrial carbon in arctic estuarine food webs is especially important in view of the current warming trend in the arctic environment and the role of advective processes that transport carbon along the nearshore shelf. Biogeochemical studies of the arctic coastal estuarine environment may provide more insights into the function of these biologically complex ecosystems.  相似文献   

14.
The speciation of sedimentary sulfur (pyrite, acid volatile sulfides (AVS), S0, H2S, and sulfate) was analyzed in surface sediments recovered at different water depths from the northwestern margin of the Black Sea. Additionally, dissolved and dithionite-extractable iron were quantified, and the sulfur isotope ratios in pyrite were measured. Sulfur and iron cycling in surface sediments of the northwestern part of the Black Sea is largely influenced by (1) organic matter supply to the sediment, (2) availability of reactive iron compounds and (3) oxygen concentrations in the bottom waters. Biologically active, accumulating sediments just in front of the river deltas were characterized by high AVS contents and a fast depletion of sulfate concentration with depth, most likely due to high sulfate reduction rates (SRR). The δ34S values of pyrite in these sediments were relatively heavy (−8‰ to −21‰ vs. V-CDT). On the central shelf, where benthic mineralization rates are lower, re-oxidation processes may become more important and result in pyrite extremely depleted in δ34S (−39‰ to −46‰ vs. V-CDT). A high variability in δ34S values of pyrite in sediments from the shelf-edge (−6‰ to −46‰ vs. V-CDT) reflects characteristic fluctuations in the oxygen concentrations of bottom waters or varying sediment accumulation rates. During periods of oxic conditions or low sediment accumulation rates, re-oxidation processes became important resulting in low AVS concentrations and light δ34S values. Anoxic conditions in the bottom waters overlying shelf-edge sediments or periods of high accumulation rates are reflected in enhanced AVS contents and heavier sulfur isotope values. The sulfur and iron contents and the light and uniform pyrite isotopic composition (−37‰ to −39‰ vs. V-CDT) of sediments in the permanently anoxic deep sea (1494 m water depth) reflect the formation of pyrite in the upper part of the sulfidic water column and the anoxic surface sediment. The present study demonstrates that pyrite, which is extremely depleted in 34S, can be found in the Black Sea surface sediments that are positioned both above and below the chemocline, despite differences in biogeochemical and microbial controlling factors.  相似文献   

15.
《Marine Geology》1999,153(1-4):11-28
For 50 years the existence of sapropels (organic-carbon-rich sediments) deposited within Plio–Pleistocene sediments of the Mediterranean Sea has been known. Initially, research concentrated on material recovered in relatively short gravity/piston cores taken from the eastern basins where sequences were found to be well developed/preserved and had extensive spatial coverage. In the main, previous studies concentrated upon establishing a workable stratigraphy, spatial correlation of individual layers and determining the probable depositional mechanisms. However, despite a plethora of research papers, some issues still remain unresolved. This is in part due to a lack of agreement between investigators; sampling and analytical short comings, restricted sample size and the fact that, in many instances, like was not being compared with like. Recently, the limit of sapropels in the western basin has been further extended. As a result, the palaeoceanographic/palaeoclimate models which had previously been developed for deposition of sapropels in the eastern basin have been modified. Most recently, strong links have been established between astronomical cyclicity and sapropel formation. This review paper provides a summary of sapropel research to date, and ongoing sapropel research in the Mediterranean, some of which appears in this thematic issue of Marine Geology. It is fitting that this thematic issue of Marine Geology be dedicated to the memory of Colette Vergnaud-Grazzini and Rob Kidd who in many ways helped to initiate the resurgence in sapropel studies in the 1970s in the Mediterranean —perhaps in 50 more years we will know all of the answers!  相似文献   

16.
《Marine Geology》1999,153(1-4):137-146
Cyclical fluctuations in planktic foraminiferal assemblages have been recognized in the pre-evaporitic Messinian in a marginal basin of the western Mediterranean. The fluctuations coincide with a dominantly precession-controlled sedimentary cyclicity (sapropels). During sapropel deposition, high planktic foraminiferal diversities are indicative of relatively stable marine conditions, while during homogeneous marl deposition low diversities seem to indicate the presence of unfavourable, more saline surface water conditions. The dominance of a precession-related signal indicates that regional climate oscillations rather than (obliquity-related) glacio-eustatically controlled influxes of Atlantic and/or Mediterranean waters are responsible for the faunal fluctuations and sedimentary cyclicity. Our scenario links the persistence of normal marine conditions during sapropel formation with increased rainfall and run-off along the western Mediterranean at times that perihelion occurred in Northern Hemisphere summer. Less favourable, highly saline surface water conditions prevailed during periods of drier climate induced by opposite precessional extremes. The cyclical oceanographic fluctuations could also have governed periodic reef growth along the margins.  相似文献   

17.
It has recently been realized that the Arctic undergoes drastic changes, probably resulting from global change induced processes. This acts on the cycling of matter and on biogenic elements in the Arctic Ocean having feedback mechanisms with the global climate, for example by interacting with atmospheric trace gas concentration. A contemporary budget for biogenic elements as well as suspended matter for the Arctic Ocean as a baseline for comparison with effects of further global change is, thus, needed. Available budgets are based on the late Holocene sedimentary record and are therefore quiet different from the present which has already been affected by the intense anthropogenic activity of the last centuries.

We calculated a contemporary suspended matter and organic carbon budget for the Kara Sea utilizing the numerous available data from the recent literature as well as our own data from Russian-German SIRRO (Siberian River Run-off) expeditions. For calculation of the budgets we used a multi-box model to simplify the Kara Sea shelf and estuary system: input was assumed to comprise riverine and eolian input as well as coastal erosion, output was assumed to consist of sedimentation and export to the Arctic Ocean. Exchange with the adjacent seas was considered in our budget, and primary production as well as recycling of organic material was taken into account. According to our calculations, about 18.5 × 106 t yr− 1 of sediments and 0.37 × 106 t yr− 1 of organic carbon are buried in the estuaries, whereas 20.9 × 106 t yr− 1 sediment and 0.31 × 106 t yr− 1 organic carbon are buried on the shelf. Most sources and sinks of our organic carbon budget of the Kara Sea are in the same order of magnitude, making it a region very sensitive to further changes.  相似文献   


18.
The stable isotopes of organic carbon (OC) and nitrogen, contents of OC and nitrogen for roots, bark, leaves, flowers and fruits of various mangrove species from Kisakasaka (Zanzibar) and Bagamoyo (mainland Tanzania) are used to assess (1) if some mangrove species are capable of fixing atmospheric nitrogen, (2) if there are differences between species in the same stand and in different stands and (3) if the mangrove signature is preserved in the sediments. Mean OC stable isotope results of various plant components range from −25.9‰ to −29.1‰ suggesting that mangrove trees in the two stands follow the C3 type of photosynthetic pathway. Mean nitrogen isotope values for various plant components range from −1.5‰ to 3.2‰ suggesting atmospheric nitrogen fixation by mangrove plants, but δ15N values approaching −3‰ that are more negative than typical diazotroph biomass exclude this possibility. Mangrove species thriving further inland are enriched in 13C and 15N relative to those thriving near the shoreline owing to complete utilization of available nutrients.Sediments beneath the mangrove forest are characterized by lower C/N ratio values and enrichment in 13C and 15N relative to plant material owing to mixing of nitrogenous rich material from adjacent area. High concentration of OC is found in bark and roots, while high nitrogen concentration is found in fruits and flowers only.  相似文献   

19.
《Marine Geology》1999,153(1-4):199-219
Pyrite formation within and directly below sapropels in the eastern Mediterranean was governed by the relative rates of sulphide production and Fe liberation and supply to the organic-rich layers. At times of relatively high SO2−4 reduction, sulphide could diffuse downward from the sapropel and formed pyrite in underlying sediments. The sources of Fe for pyrite formation comprised detrital Fe and diagenetically liberated Fe(II) from sapropel-underlying sediments. In organic-rich sapropels, input of Fe from the water column via Fe sulphide formation in the water may have been important as well. Rapid pyrite formation at high saturation levels resulted in the formation of framboidal pyrite within the sapropels, whereas below the sapropels slow euhedral pyrite formation at low saturation levels occurred. δ34S values of pyrite are −33‰ to −50‰. Below the sapropels δ34S is lower than within the sapropels, as a result of increased sulphide re-oxidation at times of relatively high sulphide production and concentration when sulphide could escape from the sediment. The percentage of initially formed sulphide that was re-oxidized was estimated from organic carbon fluxes and burial efficiencies in the sediment. It ranges from 34% to 80%, varying significantly between sapropels. Increased palaeoproductivity as well as enhanced preservation contributed to magnified accumulation of organic matter in sapropels.  相似文献   

20.
《Marine Geology》1999,153(1-4):337-343
We discuss the palaeoclimatic interpretation of unprecedented high-resolution micropalaeontological studies of short-term (2 to 4 centuries) interruptions within early Holocene organic-rich layer (sapropel) S1 from the eastern Mediterranean. Results for cores from the Adriatic and Aegean seas that contain `double' S1 sapropels indicate that these interruptions, which are centred roughly around 7000 years 14Cnc BP, are genuine and related to climatic deterioration. This interpretation is endorsed by a coeval dry event recorded in terrestrial records and indications of climatic deterioration affecting human migration patterns and early societies in Egypt. The presence of sapropel interruptions in the two major source areas of deep water for the entire eastern Mediterranean likely implies that similar intervals may be found throughout the basin, provided that sedimentation rates and sampling resolutions allow the detection of events with a duration of only several centuries. Moreover, our results show that the `sapropel mode' of circulation comprises a delicate balance between reduced ventilation and enhanced productivity, which is easily disturbed through surface water cooling triggering a short time of improved deep water ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号