首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe and comment the results of a numerical exploration of the numerous natural families of periodic orbits associated with the L 4 equilibrium point of the restricted problem of three bodies (and of course by symmetry those associated with the L 5 equilibrium point). These families are organized in a very structured network or coweb and this structure evolves, when the mass ratio varies, in a very organized way.  相似文献   

2.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   

3.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

4.
The vertical stability character of the families of short and long period solutions around the triangular equilibrium points of the restricted three-body problem is examined. For three values of the mass parameter less than equal to the critical value of Routh (μ R ) i.e. for μ = 0.000953875 (Sun-Jupiter), μ = 0.01215 (Earth-Moon) and μ = μ R = 0.038521, it is found that all such solutions are vertically stable. For μ > (μ R ) vertical stability is studied for a number of ‘limiting’ orbits extended to μ = 0.45. The last limiting orbit computed by Deprit for μ = 0.044 is continued to a family of periodic orbits into which the well known families of long and short period solutions merge. The stability characteristics of this family are also studied.  相似文献   

5.
The present research was motivated by the recent discovery of planets around binary stars. Our initial intention was thus to investigate the 3-dimensional nearly circular periodic orbits of the circular restricted problem of three bodies; more precisely Stromgren's class L, (direct) and class m, (retrograde). We started by extending several of Hénon's vertical critical orbits of these 2 classes to three dimensions, looking especially for orbits which are near circular and have stable characteristic exponents.We discovered early on that the periodic orbits with the above two qualifications are fairly rare and we decided thus to undertake a systematic exploration, limiting ourselves to symmetric periodic orbits. However, we examined all 16 possible symmetry cases, trying 10000 sets of initial values for periodicity in each case, thus 160000 integrations, all with z o or o equal to 0.1 This gave us a preliminary collection of 171 periodic orbits, all fairly near the xy-plane, thus with rather low inclinations. Next, we integrated a second similar set of 160000 cases with z o or o equal to 0.5, in order to get a better representation of the large inclinations. This time, we found 167 periodic orbits, but it was later discovered that at least 152 of them belong to the same families as the first set with 0.1Our paper quickly describes the definition of the problem, with special emphasis on the symmetry properties, especially for the case of masses with equal primaries. We also allow a section to describe our approach to stability and characteristic exponents, following our paper on this subject, (Broucke, 1969). Then we describe our numerical results, as much as space permits in the present paper.We found basically only about a dozen families with sizeable segments of simple stable periodic orbits. Some of them are around one of the two stars only but we do not describe them here because of a lack of space. We extended about 170 periodic orbits to families of up to 500 members, (by steps of 0.005 in the parameter), although, in many cases, we do not know the real end of the families. We also give an overview of the different types of periodic orbits that are most often encountered. We describe some of the rather strange orbits, (some of which are actually stable).  相似文献   

6.
We present five families of periodic solutions of Hill’s problem which are asymmetric with respect to the horizontal ξ axis. In one of these families, the orbits are symmetric with respect to the vertical η axis; in the four others, the orbits are without any symmetry. Each family consists of two branches, which are mirror images of each other with respect to the ξ axis. These two branches are joined at a maximum of Γ, where the family of asymmetric periodic solutions intersects a family of symmetric (with respect to the ξ axis) periodic solutions. Both branches can be continued into second species families for Γ → − ∞.  相似文献   

7.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

8.
The paper deals with different kinds of invariant motions (periodic orbits, 2D and 3D invariant tori and invariant manifolds of periodic orbits) in order to analyze the Hamiltonian direct Hopf bifurcation that takes place close to the Lyapunov vertical family of periodic orbits of the triangular equilibrium point L4 in the 3D restricted three-body problem (RTBP) for the mass parameter, μ greater than (and close to) μR (Routh’s mass parameter). Consequences of such bifurcation, concerning the confinement of the motion close to the hyperbolic orbits and the 3D nearby tori are also described.  相似文献   

9.
In this paper, we have studied periodic orbits generated by Lagrangian solutions of the restricted three body problem when more massive body is a source of radiation and the smaller primary is an oblate body. We have determined periodic orbits for fixed values of μ, σ and different values of p and h (μ mass ratio of the two primaries, σ oblate parameter, p radiation parameter and h energy constant). These orbits have been determined by giving displacements along the tangent and normal to the mobile co-ordinates as defined by Karimov and Sokolsky (in Celest. Mech. 46:335, 1989). These orbits have been drawn by using the predictor-corrector method. We have also studied the effect of radiation pressure on the periodic orbits by taking some fixed values of μ and σ.  相似文献   

10.
We have studied periodic orbits generated by Lagrangian solutions of the restricted three body problem when one of the primaries is an oblate body. We have determined the periodic orbits for different values of μ, h and A (h is energy constant, μ is mass ratio of the two primaries and A is an oblateness factor). These orbits have been determined by giving displacements along the tangent and normal to the mobile coordinates as defined by Karimov and Sokolsky (Celest. Mech. 46:335, 1989). These orbits have been drawn by using the predictor-corrector method. We have also studied the effect of oblateness by taking some fixed values of μ, A and h. As starters for our method, we use some known periodic orbits in the classical restricted three body problem.  相似文献   

11.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

12.
We have extend Stormer’s problem considering four magnetic dipoles in motion trying to justify the phenomena of extreme “orderlines” such as the ones observed in the rings of Saturn; the aim is to account the strength of the Lorentz forces estimating that the Lorentz field, co-acting with the gravity field of the planet, will limit the motion of all charged particles and small size grains with surface charges inside a layer of about 200 m thickness as that which is observed in the rings of Saturn. For this purpose our interest feast in the motion of charged particles with neglected mass where only electromagnetic forces accounted in comparison to the weakness of the Newtonian fields. This study is particularly difficult because in the regions we investigate these motions there is enormous three dimensional instability. Following the Poincare’s hypothesis that periodic solutions are ‘dense’ in the set of all solutions in Hamiltonian systems we try to calculate many families of periodic solutions and to study their stability. In this work we prove that in this environment charged particles can trace planar symmetric periodic orbits. We discuss these orbits in details and we give their symplectic relations using the Hamiltonian formulation which is related to the symplectic matrix. We apply numerical procedures to find families of these orbits and to study their stability. Moreover we give the bifurcations of these families with families of planar asymmetric periodic orbits and families of three dimensional symmetric periodic orbits.  相似文献   

13.
14.
Numerical solutions are presented for a family of three dimensional periodic orbits with three equal masses which connects the classical circular orbit of Lagrange with the figure eight orbit discovered by C. Moore [Moore, C.: Phys. Rev. Lett. 70, 3675–3679 (1993); Chenciner, A., Montgomery, R.: Ann. Math. 152, 881–901 (2000)]. Each member of this family is an orbit with finite angular momentum that is periodic in a frame which rotates with frequency Ω around the horizontal symmetry axis of the figure eight orbit. Numerical solutions for figure eight shaped orbits with finite angular momentum were first reported in [Nauenberg, M.: Phys. Lett. 292, 93–99 (2001)], and mathematical proofs for the existence of such orbits were given in [Marchal, C.: Celest. Mech. Dyn. Astron. 78, 279–298 (2001)], and more recently in [Chenciner, A. et al.: Nonlinearity 18, 1407–1424 (2005)] where also some numerical solutions have been presented. Numerical evidence is given here that the family of such orbits is a continuous function of the rotation frequency Ω which varies between Ω = 0, for the planar figure eight orbit with intrinsic frequency ω, and Ω = ω for the circular Lagrange orbit. Similar numerical solutions are also found for n > 3 equal masses, where n is an odd integer, and an illustration is given for n = 21. Finite angular momentum orbits were also obtained numerically for rotations along the two other symmetry axis of the figure eight orbit [Nauenberg, M.: Phys. Lett. 292, 93–99 (2001)], and some new results are given here. A preliminary non-linear stability analysis of these orbits is given numerically, and some examples are given of nearby stable orbits which bifurcate from these families.  相似文献   

15.
In this paper we study the asymptotic solutions of the (N+1)-body ring planar problem, N of which are finite and ν=N−1 are moving in circular orbits around their center of masses, while the Nth+1 body is infinitesimal. ν of the primaries have equal masses m and the Nth most-massive primary, with m 0=β m, is located at the origin of the system. We found the invariant unstable and stable manifolds around hyperbolic Lyapunov periodic orbits, which emanate from the collinear equilibrium points L 1 and L 2. We construct numerically, from the intersection points of the appropriate Poincaré cuts, homoclinic symmetric asymptotic orbits around these Lyapunov periodic orbits. There are families of symmetric simple-periodic orbits which contain as terminal points asymptotic orbits which intersect the x-axis perpendicularly and tend asymptotically to equilibrium points of the problem spiraling into (and out of) these points. All these families, for a fixed value of the mass parameter β=2, are found and presented. The eighteen (more geometrically simple) families and the corresponding eighteen terminating homo- and heteroclinic symmetric asymptotic orbits are illustrated. The stability of these families is computed and also presented.  相似文献   

16.
We study the simple periodic orbits of a particle that is subject to the gravitational action of the much bigger primary bodies which form a regular polygonal configuration of (ν+1) bodies when ν=8. We investigate the distribution of the characteristic curves of the families and their evolution in the phase space of the initial conditions, we describe various types of simple periodic orbits and we study their linear stability. Plots and tables illustrate the obtained material and reveal many interesting aspects regarding particle dynamics in such a multi-body system.  相似文献   

17.
We consider the bifurcation of 3D periodic orbits from the plane of motion of the primaries in the restricted three-body problem with oblateness. The simplest 3D periodic orbits branch-off at the plane periodic orbits of indifferent vertical stability. We describe briefly suitable numerical techniques and apply them to produce the first few such vertical-critical orbits of the basic families of periodic orbits of the problem, for varying mass parameter and fixed oblateness coefficent A1 = 0.005, as well as for varying A1 and fixed = 1/2. The horizontal stability of these orbits is also determined leading to predictions about the stability of the branching 3D orbits.  相似文献   

18.
In this paper, we determine series of horizontally critical symmetric periodic orbits of the six basic families, f,g,h,i,l,m, of the photogravitational restricted three-body problem, and computetheir vertical stability. We restrict our study in the case where only the first primary is radiating, namely q 1≠1 andq 2=1. We also compare our results with those of Hénon and Guyot (1970) so as to study the effect of radiation to this kind of orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
20.
Studying the two-body problem associated to an anisotropic Schwarzschild-type field, Mioc et al. (2003) did not succeed in proving the existence or non-existence of periodic orbits. Here we answer this question in the affirmative. To do this, we start from two basic facts: (1) the potential generates a strong force in Gordon’s sense; (2) the vector field of the problem exhibits the symmetries S i , , which form, along with the identity, an Abelian group of order 8 with three generators of order 2. Resorting to S 2 and S 3, in connection with variational methods (particularly the classical lower-semicontinuity method), we prove the existence of infinitely many S 2- or S 3-symmetric periodic solutions. The symmetries S 2 and S 3 constitute an indicator of the robustness of the classical isotropic Schwarzschild-type system to perturbations (as the anisotropy may be considered).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号