首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synoptic ship and satellite observations were performed of the Kuroshio warm-core ring (KWCR) 93A and its adjacent waters, off Sanriku, northwestern North Pacific, between early April and late June 1997. The temporal and spatial distribution of chlorophylla (Chl-a) and sea surface temperature in the study area were analyzed using data from ADEOS Ocean Color and Temperature Scanner (OCTS) and NOAA Advanced Very High Resolution Radiometer (AVHRR). The objective of this study was to describe the temporal and spatial variability of the spring bloom and understand its relationship with the changes in the hydrographic structure of these waters in and around KWCR 93A. The maximum value of Chl-a concentration in the ring was less than 1 mg/m3 during April. The spring bloom in the ring occurred early in May and the relatively high maximum (>1.0 mg/m3) continued from early in May to mid-June. In late June, a ship-observed surface Chl-a concentration of less than 0.4 mg/m3 suggests that the spring bloom had already declined in and around KWCR 93A. Double spiral structures of warm and cold streamers appeared from late April to mid-May, which may have an influence on the occurrence of the spring bloom in and around the ring. In this episodic event, the warm streamer can maintain the available potential energy of the ring and the strength of upwelling around the ring. The cold streamer provided water with a high Chl-a concentration to the surface layer of the ring. In order to understand the temporal and spatial variability of Chl-a distribution in the ring, the behavior of the warm and cold streamers needs to be taken into consideration.  相似文献   

2.
In order to examine the applicability of remotely-sensed ocean color for the estimation of phytoplankton biomass and primary production in the Oyashio region, the western subarctic Pacific, vertical distributions of chlorophylla concentration and primary production were observed in April and May 1997. Spring bloom was observed in both April and May, and the surface concentration of chlorophylla exceeded 40 mg m−3. The relationship between the standing stocks of chlorophylla within the layer from the sea surface to one optical depth (0–1/k layer) and the surface chlorophylla concentration is expressed as a Michaelis-Menten equation. The mean ratio of the standing stock of chlorophylla in the euphotic layer to that in the 0–1/k layer was 4.41, this ratio did not significantly differ from 4.61 which was obtained at homogeneous distribution of chlorophylla within the euphotic layer. These facts suggest that the distribution of chlorophylla could be assumed to be homogeneous in the euphotic layer during the spring bloom. Results of primary production measurements by simulatedin situ method were compared with those by an algorithm with two variables; chlorphylla and non-spectral PAR. Daily primary production in the euphotic layer estimated by the algorithm varied in a range of 38–274% of that estimated by incubation, although the primary productions by the algorithm agreed with those by the incubation at a half of stations. Primary production within the euphotic layer calculated using simply the surface data was the same as that estimated using vertical distribution of chlorophylla. These results show that the primary production in the euphotic layer may be estimated from the remote sensed measurements during the spring bloom in the Oyashio region.  相似文献   

3.
An algorithm to estimate primary production by chlorophylla and sea surface temperature from satellite was evaluated with primary production data from the Ocean Color and Temperature Scanner (OCTS) Sanriku field campaign. The algorithm was applied to the data of OCTS on the Advanced Earth Observing Satellite (ADEOS) off Sanriku, North Pacific, on April 26, 1997. The wavelength-, time-, and depth-resolved model reasonably estimated the chlorophyll-specific primary production of each depth and water column integrated primary production. Although the model parameters were adjusted with the photosynthesis-irradiance curves obtained in the region, the resultant primary production was not significantly different from the global model of Antoine and Morel (1996). This is probably because there is considerable variability in the physiological parameters in this limited area, off Sanriku, and in the limited time, spring. Estimated integrated primary production was well correlated with chlorophylla but not with temperature. This indicates that the temperature dependence of the primary production was less than the variability caused by chlorophylla concentration.  相似文献   

4.
To examine whether the regime shift in 1998 that has been variously reported to have occurred in the oceanographic conditions of the central and eastern North Pacific also occurred in the Oyashio region, western North Pacific, we compared data over the period 1990–2003. Oceanographic conditions were compared before 1997 with those after 1998, using the A-line dataset (1990–2003) obtained by the oceanographic surveys of the Hokkaido National Fisheries Research Institute, Fisheries Research Agency (HNFRI/FRA). Seasonal changes of the monthly-mean SST (as temperature in the surface layer) show a significant increase in spring after 1998. After 1998, the mean concentration of chlorophyll a at the surface was higher in spring than that before 1997. This was more remarkable in the main current of the Oyashio. These changes suggest that the spring phytoplankton bloom in the Oyashio region after 1998 was larger in magnitude and initiated earlier. Consumption of nutrients during the spring bloom and standing stock of netplankton also shows a distinct difference between the time period before 1997 and after 1998. These results support the occurrence of the regime shift around 1998 in the Oyashio region. The changes of hydrographical conditions accompanying with the 1998 regime shift are discussed. The hydrographic mechanism of enhancement of primary productivity during the spring phytoplankton bloom was not fully clarified, though. Results in this study may support the usefulness of the A-line dataset for analysis of long-term variability in the western subarctic Pacific.  相似文献   

5.
We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end of the bloom, suggesting an increased likelihood of mortality among organisms including diatoms resulting from viral infection. This is the first report on the microbial trophodynamics, including viruses, during the spring diatom bloom in the western subarctic Pacific.  相似文献   

6.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The relationship between euphausiid community structure and water region was studied during a 2-year seasonal survey in the northwestern (NW) Pacific Ocean. The euphausiid community structure and its associated species were analyzed from 38 micronekton samples collected during eight cruises. The euphausiid community structure and its distribution patterns clearly corresponded to physical oceanographic features in the Oyashio region, Oyashio–Kuroshio Mixed Water Region (OKMWR), and Kuroshio region. In contrast, community structure was unrelated to seasonality. The 19 species out of 40 identified in this area were grouped and named after their habitats. The six cold-water species were grouped into three regional types: two coastal Oyashio species, three Oyashio–OKMWR species, and one Oyashio–Kuroshio species. The four species dominating in the OKMWR were categorized into each specific types: Nematoscelis difficilis as OKMWR–Oyashio species, Euphausia gibboides as OKMWR species, Euphausia similis as OKMWR–Oyashio & OKMWR–Kuroshio species, and Euphausia recurva as OKMWR–Kuroshio species. The seven warm-water species were categorized as Kuroshio–OKMWR species or Kuroshio species. The other two species were categorized as cosmopolitan species. In particular, regarding the result in the OKMWR, our study suggest that (1) the OKMWR has high species diversity, and (2) the dominant species, such as Euphausia pacifica, N. difficilis, E. similis, and E. gibboides, are considered to be key species in the food webs in this region.  相似文献   

8.
The variety in shape and magnitude of thein vivo chlorophyll-specific absorption spectra of phytoplankton was investigated in relation to differences in pigment composition off Sanriku, northwestern North Pacific. Site-to-site variations of the absorption coefficients,a ph * (λ), and pigment composition were clearly observed. At warm-streamer stations, higher values ofa ph * (440) anda ph * (650) were found with relatively high concentrations of chlorophyllb (a green algae marker). At stations located in the Oyashio water (cold streamer),a ph * (440) values were lower and fucoxanthin (a diatom marker) concentrations were higher, compared to the other stations. The peak in the absorption spectra at the Oyashio stations was shifted toward shorter wavelengths, which was probably due to the presence of phaeopigments. In a Kuroshio warm-core ring, the magnitude ofa ph * (440) was in between those at the warm-streamer and Oyashio stations, and the diagnostic pigment was peridinin (a dinoflagellate marker). These findings indicated that major differences in phytoplankton absorption spectra of each water mass were a result of differences in the phytoplankton pigment composition of each water mass, which was probably related to the phytoplankton community.  相似文献   

9.
Partial pressure of CO2 in surface sea water (pCO2) was measured continuously off Sanriku in May, 1997 by a new pCO2 measurement system. We have examined the relation of pCO2 to physical factors such as temperature, salinity and density, chemical and biological factors such as nutrients and carbonate system and chlorophylla. In the Kuroshio region pCO2 was not correlated to physical, chemical and biological factors in the range of 260 to 290 μatom. In transition water (Tr1) between Kuroshio and the Oyashio second branch, pCO2 was weakly correlated to physical factors and strongly correlated to nutrients. In transition water (Tr2) between the Oyashio first and second branches, pCO2 was highly correlated to temperature (SD: 10.9 μatom) and salinity (SD: 8.6 μatom) and also to nutrients. In transition water (Tr1+Tr2), pCO2 was highly multivariately correlated to temperature (T), salinity (S), chlorophylla (CH) (or nitrate+nitrite (N)) as follows, pCO2(μatom)= 10.8×T(°C)+27.7×S+2.57CH(μg/1) −769, R2= 0.86, SD = 20.9, or pCO2(μatom)= 3.9×T(°C)+25.5×S+16.0NO3(μM) −686, R2= 0.99, SD = 6.4. Moreover, pCO2 was predicted by only two factors, one physical (S) and the other chemical/biological (N) as follows: pCO2 (μatom)=32.8×S+19.4N−908, R2=0.97, SD=8.4. The pH measured at 25°C was well correlated with normalized pCO2 at a fixed temperature. In the Oyashio region pCO2 was decreased to 160 μatom, probably because of spring bloom, but was not correlated linearly to chlorophylla. The results obtained showed the possibility of estimating pCO2 of the Oyashio and transition regions in May by satellite remote sensing of SST, but the problem of estimation of pCO2 in Kuroshio water remains to be solved.  相似文献   

10.
The primary productivity in coastal water adjacent to the Kuroshio off Shimoda was measured as part of the International Biological Program. The total amount of chlorophylla in the euphotic zone varied widely from 20 mg/m2 to 60 mg/m2 throughout the year and the maximum values were measured in early summer. These values were higher than those in the Kuroshio but agreed with those in the Oyashio. Vertical differentiation of photosynthetic characteristics was well developed and it was strongly related to the stratification of the water column. The light-saturated photosynthetic rate of surface phytoplankton varied from 5.8 mg C/(mg chl.h) in May to 2.0 mg C/(mg chl.h) in January. These rates were higher than those in the Kuroshio. The daily primary production was estimated by the chlorophyll method. Highest value was 0.5–1.5 g C/(m2day) in early summer and the lowest was 0.2 g C/(m2day) in winter. The primary productivity in the coastal water studied accorded fairly well with that in the Oyashio.Contribution No. 239 from Shimoda Marine Biological Station. This study is part of JIBP project entitled Studies on the Dynamic Status of the Biosphere, a Special Research Project supported by the Ministry of Education.  相似文献   

11.
In order to detect iron (Fe) stress in micro-sized (20–200 μm) diatoms in the Oyashio region, western subarctic Pacific during spring, immunological ferredoxin/flavodoxin assays were applied to samples collected from the surface layer in May 2005. Concomitantly, the community composition of the micro-sized phytoplankton and hydrographic conditions, including dissolved Fe and macronutrient concentrations, were also examined. Chlorophyll (Chl) a concentrations were <2 mg m−3 at all sampling stations, except at a station where the Chl a level was 9.0 mg m−3 and a micro-sized diatom bloom occurred. A high abundance of ferredoxin in micro-sized diatoms was detected only at a rather near-shore station where dissolved Fe and macronutrient concentrations were higher, indicating that the micro-sized diatoms did not suffer from iron deficiency. On the other hand, flavodoxin in micro-sized diatoms was often observed at the other stations, including the bloom station, where macronutrients were replete but dissolved Fe concentration was low (0.31 nM). A significant amount of chlorophyllide a, a degradation product of Chl a, was also observed at the bloom station, suggesting a decline of the diatom bloom. The micro-sized phytoplankton species at all the stations were mainly composed of the diatoms Thalassiosira, Chaetoceros, and Fragilariopsis spp. Our study indicates that micro-sized diatoms were stressed by Fe bioavailability during the spring season in the Oyashio region  相似文献   

12.
We observed the partial pressure of oceanic CO2, pCO2 sea, and related surface properties in the westernmost region of the subarctic North Pacific, seasonally from 1998 to 2001. The pCO2 sea in the Oyashio region showed a large decrease from winter to spring. In winter, pCO2 sea was higher than 400 μatm in the Oyashio region and this region was a source of atmospheric CO2. In spring, pCO2 sea decreased to extremely low values, less than 200 μatm (minimum, 139 μatm in 2001), around the Oyashio region with low surface salinity and this region turned out to be a strong sink. The spatial variations of pCO2 sea were especially large in spring in this region. The typical Oyashio water with minimal mixing with subtropical warm water was extracted based on the criterion of potential alkalinity. The contribution of main oceanic processes to the changes in pCO2 sea from winter to spring was estimated from the changes in the concentrations of dissolved inorganic carbon and nutrients, total alkalinity, temperature and salinity observed in surface waters in respective years. These quantifications indicated that photosynthesis made the largest contribution to the observed pCO2 sea decreases in all years and its magnitude was variable year by year. These year-to-year differences in spring biological contribution could be linked to those in the development of the density stratification due to the decrease in surface salinity. Thus, the changes in the surface physical structure could induce those in pCO2 sea in the Oyashio region in spring. Furthermore, it is suggested that the direction and magnitude of the air-sea CO2 flux during this season could be controlled significantly by the onset time of the spring bloom. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In order to examine the formation, distribution and synoptic scale circulation structure of North Pacific Intermediate Water (NPIW), 21 subsurface floats were deployed in the sea east of Japan. A Eulerian image of the intermediate layer (density range: 26.6–27.0σθ) circulation in the northwestern North Pacific was obtained by the combined analysis of the movements of the subsurface floats in the period from May 1998 to November 2002 and historical hydrographic observations. The intermediate flow field derived from the floats showed stronger flow speeds in general than that of geostrophic flow field calculated from historical hydrographic observations. In the intermediate layer, 8 Sv (1 Sv ≡ 106 m3s−1) Oyashio and Kuroshio waters are found flowing into the sea east of Japan. Three strong eastward flows are seen in the region from 150°E to 170°E, the first two flows are considered as the Subarctic Current and the Kuroshio Extension or the North Pacific Current. Both volume transports are estimated as 5.5 Sv. The third one flows along the Subarctic Boundary with a volume transport of 5 Sv. Water mass analysis indicates that the intermediate flow of the Subarctic Current consists of 4 Sv Oyashio water and 1.5 Sv Kuroshio water. The intermediate North Pacific Current consists of 2 Sv Oyashio water and 3.5 Sv Kuroshio water. The intermediate flow along the Subarctic Boundary contains 2 Sv Oyashio water and 3 Sv Kuroshio water. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In the previous paper (Yanget al., 1993), it was shown that there always exists the coastal salinity-minimum-layer (SML) water just off the Boso Peninsula. The coastal SML water is bounded by the current zone of the Kuroshio, and a relatively high salinity domain separates it from the offshore SML water which would be a continum of the North Pacific Intermediate Water. We suggested that the coastal SML water region indicates the pathway along which the Intermediate Oyashio Water intrudes into Sagami Bay. In this paper, by selecting seven cases where we found the coastal SML water having abnormally high oxygen content and low salinity, we try to follow the intrusion manner of the Intermediate Oyashio Water into Sagami Bay by using available hydrographic data taken routinely by various organizations in the period from 1973 to 1986. Some of these water can be traced from the observation line near the cape of Inubo to the central part of Sagami Bay, and its propagation speed along the coast is shown to be of order of 1 cm/s. The intruding intermediate Oyashio water usually has a complicated layered structure in it, and its time scale of persistence is shown to be only a few months.  相似文献   

15.
Primary productivity off Enshu-nada was measured by the13C method in September 1989. Primary productivity was estimated in a cold water mass developed off Enshu-nada for the first time. The obtained value was 469 mgC·m–2·d–1 and higher than those in the pelagic area of Kuroshio, but equivalent to those in the neritic and the Oyashio areas. It was indicated that cold water mass is the place where organic matter is produced actively. Extremely high chlorophylla of more than 5g·l–1 were found in the cold water mass. The high productivity was due to high standing crop of phyoplankton. Furthermore, calculated light efficiency and quantum yield showed consistent increase with depth and showed a maximum at 10% light level. Both were larger on the coastal side than those on the oceanic side of the Kuroshio current.  相似文献   

16.
The concentration of nutrients was measured during the spring phytoplankton bloom in Funka Bay over a 5-year period (1988–92). During the winter mixing period, nutrient concentrations were similar in every year except in 1990 when a high concentration of silicate was observed. There was interannual variation in the onset of the bloom, presumably depending on the stability of the water column. The bloom developed in early March when the Oyashio water (OW), which has a lower density than the existing winter water, flowed into the bay and the pycnocline formed near the bottom of the euphotic zone. In this case, high chl a was found only in the euphotic zone and nutrient utilization was limited to this zone. In the year when the inflow of OW was not observed by April, the bloom took place at the end of March without strong stratification and high chl a was found in the whole water column, accompanied by a decrease in nutrients. Interannual differences were found not only at the beginning of the decrease, but also in the thickness of the layer which showed a decrease in nutrients. Primary production from the beginning to the end of the spring bloom was estimated from the nutrient budget before and after the spring bloom. The integrated production over the spring bloom period ranged from 25 to 73 g C m-2, which accounts for 19–56% of the annual production in this bay. We found that the timing of the bloom was strongly dependent on the inflow of OW, but the amount of production was not clearly related to this timing.  相似文献   

17.
An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
19.
Oyashio water flowing into the Mixed Water Region (MWR) and the Kuroshio Extension region that forms North Pacific Intermediate Water (NPIW) has been examined, based on four Conductivity-Temperature-Depth profiler (CTD)/Lowered Acoustic Doppler Current Profiler (L-ADCP) surveys of water masses and ocean currents. There are two processes by which the Oyashio water intrudes across the Subarctic Front (SAF): one is a direct cross-nearshore-SAF transport near Hokkaido along the western boundary, and the other is a cross-offshore-SAF process. Seasonal variations were observed in the former process, and the transport of the Oyashio water across SAF near Hokkaido in the density range of 26.6–27.4σθ was 5–10 Sv in spring 1998 and 2001, and 0–4 Sv in autumn 2000, mainly corresponding to the change of the southwestward Oyashio transport. Through the latter process, 5–6 Sv of the Oyashio water was entrained across the offshore SAF from south of Hokkaido to 150° in both spring 2001 and autumn 2000. The total cross-SAF Oyashio water transport contributing to NPIW formation is more than 10 Sv, which is larger than previously reported values. Most of the Oyashio water formed through the former process was transported southeastward through the Kuroshio Extension. It is suggested that the Oyashio intrusion via the latter process feeds NPIW in the northern part of the MWR, mainly along the Subarctic Boundary and SAF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In order to examine the formation, distribution and transport of North Pacific Intermediate Water (NPIW), repeated hydrographic observations along several lines in the western North Pacific were carried out in the period from 1996 to 2001. NPIW formation can be described as follows: (1) Oyashio water extends south of the Subarctic Boundary and meets Kuroshio water in intermediate layers; (2) active mixing between Oyashio and Kuroshio waters occurs in intermediate layers; (3) the mixing of Oyashio and Kuroshio waters and salinity minimum formation around the potential density of 26.8σθ proceed to the east. It is found that Kuroshio water flows eastward even in the region north of 40°N across the 165°E line, showing that Kuroshio water extends north of the Subarctic Boundary. Volume transports of Oyashio and Kuroshio components (relative to 2000 dbar) integrated in the potential density range of 26.6–27.4σθ along the Kuroshio Extension across 152°E–165°E are estimated to be 7–8 Sv (106 m3s−1) and 9–10 Sv, respectively, which is consistent with recent work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号