共查询到20条相似文献,搜索用时 62 毫秒
1.
ICP算法及其在建筑物扫描点云数据配准中的应用 总被引:4,自引:1,他引:4
ICP算法是三维激光扫描数据处理中点云数据配准的一种高水平的数学方法。本文全面地回顾了ICP算法的研究背景,并重点阐述了迭代最近点法ICP的计算过程及其主要的改进算法;通过建筑物三维激光扫描数据的采集,对基于ICP算法的点云数据配准过程进行了详细地分析。实验分析表明三维激光扫描数据配准后的点云数据质量较大程度上依赖于专业技术人员的数据处理经验和专业知识。 相似文献
2.
3.
4.
基于特征点提取和匹配的点云配准算法 总被引:1,自引:0,他引:1
针对ICP算法配准需要两点云有较好的初始位置否则无法获取准确匹配结果的问题,提出一种新的粗配准算法。调整两片部分重叠点云的初始位置;在求取一点处法向量的基础上,利用点云曲率信息,提取特征点,获取两点云每一特征点处的属性向量;通过相似度函数评价,寻找匹配特征点对进行粗配准。试验表明,该基于特征点提取和匹配的方法可为ICP算法提供良好的点云初始位置,并提高配准精度和可靠性。 相似文献
5.
线状特征约束下基于四元数描述的LiDAR点云配准方法 总被引:1,自引:0,他引:1
针对经典的基于同名点状特征匹配的LiDAR点云配准算法存在计算量大,点状特征提取精度低,以及基于七参数转换模型的LiDAR点云配准算法中方程线性化过程对配准精度影响较大的特点,提出了以线状特征作为LiDAR点云配准的基元,利用四元数法来表达旋转矩阵,进而形成线状特征约束下基于四元数描述的LiDAR点云配准方法,给出了线状特征约束下三维相似变换的相似性测度表达方法,推导并论证了以线状特征作为配准基元时同名线状特征需要满足的条件。根据四元数与旋转变换矩阵之间的对应关系,求解了基于四元数法的旋转矩阵,并根据旋转矩阵求解了平移及缩放系数。 相似文献
6.
针对建筑物表面具有明显的几何特征这一特点,提出基于点线特征的建筑物点云配准方法。首先基于点云配准基本理论,利用提取的建筑物点特征使用对偶四元数实现建筑物不同测站点云的粗配准,获取初始配准参数以及配准后的建筑物点云数据,然后将粗配准获取的参数作为待求精确参数值的初始值,利用建筑物中的线特征将共线方程作为精配准的数学模型,最后通过平差迭代获取参数的精确值,实现不同测站建筑物点云的高精度配准。实验结果表明,获取的配准后同名特征距离中误差为2.1×10-3 m,证明了将点线特征相结合可以有效改善建筑物点云配准质量,提高建筑物点云配准的精度,对建筑物三维重建具有重要意义。 相似文献
7.
8.
针对地面LiDAR点云配准中不同坐标系点云数据存在对应的平面特征不同的问题,文章提出了一种基于总体最小二乘的地面LiDAR点云数据配准算法:通过对分割后的点云数据平面拟合,得到相应法向量;根据不同坐标系中LiDAR点云数据对应的平面法向量,利用反对称矩阵和罗德里格矩阵的性质,用3个独立参数代替3个旋转参数,采用总体最小二乘法建立旋转矩阵解算模型;采用总体最小二乘法确定平移参数的计算公式;最后根据转换后特征点云与对应平面点云的重复情况,给出了配准模型的精度公式。实验结果表明该方法精度较高,可以取得较好的点云配准效果,适合于含有大量重复平面特征的点云数据的配准。 相似文献
9.
11.
针对传统的点云简化算法导致特征区域容易丢失的问题,提出了一种新的基于特征约束的点云简化的算法。首先对散乱点云用KD—TREE建立起空间拓扑关系,在此基础上建立起单个点的K-邻域。然后对K-邻域内建立起最小二乘平面,设定合理的阈值来度量数据点的重要性。依据特征点的分布估算每个点的简化距离阈值,以此为基础对每个点进行自适应简化。实验证明该算法能满足在点云数据简化过程中检测并保留特征点的要求。 相似文献
12.
为了提高低覆盖率点云的配准精度和收敛速度,提出了一种基于二维图像特征的点云配准方法。首先采用基于区域层次的点云配准算法实现粗配准;然后将三维点云转换成二维图像,再采用SURF算法提取二维图像的特征,并求解其匹配像素点对;最后根据二维匹配点获取相应的三维点云相关点,并计算刚体变换,由此实现点云的快速精确配准。试验结果表明,与迭代最近点(ICP)算法相比,该点云配准方法的配准精度和耗时分别提高了约20%和60%,是一种快速、高精度的点云配准算法。 相似文献
13.
基于特征点匹配及提纯的点云配准算法 总被引:1,自引:0,他引:1
针对传统的基于ICP点云配准算法配准时间长、收敛慢、需要较好初始配准等限制,本文利用现有的点云特征提取算法和描述算法,提取并匹配点云中的特征点,用RANSAC算法结合坐标转换模型剔除误匹配点对,用匹配点对在两点云中的坐标计算之间的坐标转换参数,从而实现点云的配准。相比ICP类算法,提高了点云配准的效率,同时提高了点云配准的自动化程度。 相似文献
14.
特征提取对建筑物精细建模的品质和精度起着重要作用。为清晰准确地提取建筑物的特征信息,本文针对采用传统的法矢估计方法受噪声影响大、存在误判的问题,提出了一种基于移动最小二乘法矢估计的建筑物点云特征提取方法。该方法首先采用移动最小二乘法进行法矢估计,然后将K邻域法矢夹角的均值作为点的显著性指标进行特征点判别,最后对提取出的特征点集进行下采样,进一步消除冗余信息。试验结果表明,采用移动最小二乘法进行点云法矢估计,其结果更加准确和稳健,从而有效提升了建筑物点云特征提取的精确性和可靠性,对特征点集的下采样能够删除大量冗余特征点,使提取的特征线更加简洁、清晰、完整。 相似文献
15.
于明旭 《测绘与空间地理信息》2020,(2):38-40
点云配准精度是决定三维重建模型的质量因素之一,目前,最常用是ICP点云配准算法,经典的ICP算法易局部收敛,影响点云配准精度。本文提出基于间接平差的ICP点云配准算法,设定目标点集中目标点坐标与转入目标点集中的点坐标之间的距离阈值实现点云精确配准。通过与经典ICP算法对比可知,本算法在一定程度上提高了点云配准精度和速度。 相似文献
16.
三维激光扫描测量技术是当前测绘领域研究的热点。点云各个要素特征提取在三维建模中是非常重要的一个环节,也逐渐成为三维点云数据处理中的一个研究重点。目前对点云数据特征提取仍然存在一些问题,大多数算法的研究是针对栅格点云数据进行的,存在容易受到噪声数据的影响以及适应性不强等问题。本文在研究了现有的点云数据特征提取的方法的基础上,将法线差分算法应用到场景内地物提取中,从而实现场景中地物的特征提取。 相似文献
17.
提出了一种综合利用快速点特征直方图(FPFH)描述符和同名点引导ICP优化的地面激光扫描(TLS)点云配准方法。该方法包括3个步骤:1)点云金字塔构建;2)基于FPFH的粗配准;3)同名点引导的ICP精配准。首先使用体素网格滤波器构造点云的金字塔结构,在粗配准时,FPFH描述符用于金字塔顶层上点云的鲁棒匹配,在此基础上,再进行两层级同名点引导的ICP精配准优化,使用3组典型TLS点云对进行实验,结果表明本文方法可以高效地完成TLS点云的配准。 相似文献
18.
随着三维激光扫描技术的发展,利用三维激光扫描仪采集信息,构建三维模型成为了热门的课题。由于受到观测环境、观测方向等影响,无法一次性地获得物体的所有的点云数据。因此,不同视角下点云数据的配准成为了三维建模中的关键技术,直接影响了最终的重合结果以及模型精度。本文着重研究主方向贴合法和最近点迭代算法(ICP算法),基于matlab平台编写算法,并对算法进行研究,得出配准结果以及配准精度。 相似文献
19.
朱宁宁 《测绘与空间地理信息》2015,(5)
针对目前LiDAR获取的点云数据配准中ICP算法迭代计算效率较低和使用标靶配准时精扫标靶费时费力等问题,提出利用扫描地物所包含的平面特征及点云数据的离散特性,通过拟合平面得到平面的单位法向量进行旋转角的求解.由于点云数据中含有误差,使用拟合平面的法向量不仅避免了对标靶的精细扫描,而且也消弱了点云误差对转换参数的影响.最后通过实例验证了本文方法的可行性与严密性. 相似文献