首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using frequency and time domain analysis, the authors analyzed the hydrodynamics and motion behavior of a Truss Spar platform at a water depth of 1500 m in the Liwan 3-1 area of the South China Sea. Firstly, the seakeeping ability is acquired in the frequency domain by calculating the hull’s hydrodynamics and comparing with a semi-submersible platform. The random wave analysis for 100-year, 10-year and 1-year return periods in Liwan 3-1 distinctly shows lower heave but larger surge and pitch re-sponses of the Truss Spar than those of a semi-submersible. Secondly, 3-hour motions of the Truss Spar are predicted and compared in the time domain under 100-year return period conditions in Liwan 3-1 and the Gulf of Mexico. Thirdly, the hull/mooring line cou-pled and uncoupled models are compared. Finally, the responses of the Truss Spar under 10-year and 1-year return period conditions are assessed. The results reveal that the mooring line damping reflected by the coupled model distinctly decreases the low frequency motion. The maximum heave response for 100-year return period waves is 1.23m and below 0.1m for the case of 1-year return period.  相似文献   

2.
Observations made on the northern Portugal mid-shelf between May 13 and June 15,2002 were used to characterise the near-surface velocity during one upwelling season. It was found that in the surface mixed layer,the 'tidal current' was diurnal,but the tidal elevation was semi-diurnal. Both the residual current and the major axes of all tidal constituents were nearly perpendicular to the isobaths and the tidal current ellipses rotated clockwise;the major axis of the major tidal ellipse was about 3 cm s-1. The extremely strong diurnal current in the surface layer was probably due to diurnal heating,cooling,and wind mixing that induced diurnal oscillations,including the diurnal oscillation of wind stress. This is a case different from the results measured in the other layers in this area. The near-inertial spectral peaks occurred with periods ranging from 1 047 min to 1 170 min,the longest periods being observed in deeper layers,and the shortest in the surface layer. Weak inertial events appeared during strong upwelling events,while strong inertial events appeared during downwelling or weak subinertial events. The near-inertial currents were out of phase between 5 m and 35 m layers for almost the entire measurement period,but such relationship was very weak during periods of irregular weak wind. Strong persistent southerly wind blew from May 12 to 17 and forced a significant water transport onshore and established a strong barotropic poleward jet with a surface speed exceeding 20 cm s-1. The subinertial current was related to wind variation,especially in the middle layers of 15 m and 35 m,the maximum correlation between alongshore current and alongshore wind was about 0.5 at the 5 m layer and 0.8 at the 35 m layer. The alongshore current reacted more rapidly than the cross-shore current. The strongest correlation was found at a time lag of 20 h in the upper layer and of 30 h in the deeper layer. The wind-driven surface velocity obtained from the PWP model had maximum amplitude of about 7 cm s-1,corresponding to a wind stress at 0.1 Pa,and the horizontal velocity shear due to thermal wind balance had the order of 3 cm s-1. So the local wind and thermal wind would only explain a part of the strong surface velocity variations.  相似文献   

3.
A survey was conducted in the equatorial area of Indian Ocean for a better understanding of the dynamics of hook depth distribution of pelagic longline fishery.We determined the relationship between hook depth and vertical shear of current coefficiency,wind speed,hook position code,sine of wind angle,sine of angle of attack and weight of messenger weight.We identified the hook depth models by the analysis of covariance with a general linear model.The results showed that the wind effect on the hook depth can be ignored from October to November in the survey area;the surface current effect on the hook depth can be ignored;the equatorial undercurrent is the key factor for the hook depth in Indian Ocean;and there is a negative correlation between the hook depth and vertical shear of current and angle of attack.It was also found that the deeper the hook was set,the higher hook depth shoaling was.The proposed model improves the accuracy of the prediction of hook depth,which can be used to estimate the vertical distribution of pelagic fish in water column.  相似文献   

4.
A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.  相似文献   

5.
Using the wave model WAVEWATCH III(WW3), we simulated the generation and propagation of typhoon waves in the South China Sea and adjacent areas during the passage of typhoon Nesat(2011). In the domain 100°–145°E and 0°–35°N, the model was forced by the cross-calibrated multi-platform(CCMP) wind fi elds of September 15 to October 5, 2011. We then validated the simulation results against wave radar data observed from an oil platform and altimeter data from the Jason-2 satellite. The simulated waves were characterized by fi ve points along track using the Spectrum Integration Method(SIM) and the Spectrum Partitioning Method(SPM), by which wind sea and swell components of the 1D and 2D wave spectra are separated. There was reasonable agreement between the model results and observations, although the WW3 wave model may underestimate swell wave height. Signifi cant wave heights are large along the typhoon track and are noticeably greater on the right of the track than on the left. Swells from the east are largely unable to enter the South China Sea because of the obstruction due to the Philippine Islands. During the initial stage and later period of the typhoon, swells at the fi ve points were generated by the propagation of waves that were created by typhoons Haitang and Nalgae. Of the two methods, the 2D SPM method is more accurate than the 1D SIM which overestimates the separation frequency under low winds, but the SIM method is more convenient because it does not require wind speed and wave direction. When the typhoon left the area, the wind sea fractions decreased rapidly. Under similar wind conditions, the points located in the South China Sea are affected less than those points situated in the open sea because of the infl uence of the complex internal topography of the South China Sea. The results reveal the characteristic wind sea and swell features of the South China Sea and adjacent areas in response to typhoon Nesat, and provide a reference for swell forecasting and offshore structural designs.  相似文献   

6.
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850–2100. The model can simulate the IOD features realistically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circulation leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Although the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model.  相似文献   

7.
本文在基本气流具有水平切变的情况下,利用摄动法导出了非线性Rossby波所满足的三阶Zakharov方程,然后,考虑了基流具有弱切变的情况,通过使用三阶Zakharov方程研究了Rossby波列的第一类不稳定性问题。结果表明:通过非线性作用,大气中的Rossby波列可产生调制不稳定。同时,本文对这种不稳定的区域,增长率和周期进行了详细的计算,并讨论了波振幅、波数、纬度和基流切变对它们的影响,指出Rossby波列的调制不稳定可以激发30~60天的低频振荡。  相似文献   

8.
MODUrnONTheS0uthChinaSea(SCS)isabophalrnarginalbasinwhereEastAsiamonsoonsprevail.0bviousadjustInentSoftheupperocanoccurduetOthealtematingsurnxneandwintermonsoons.ThemostboohantaspchoflargeanlecurmtSintheSesaretheupperoonnicresponsetothemonsoons(Dale,l956).MostpreviousmrehesfocusedondiagnostiesandmodelingofsuffocecurmtS.Wwti(l96l)plotalsurfacentsbasedonshipdriflsintheNAGAReportNo.2anddescritaltheperiodicallysdri-annualreversingofwindsandrtinthisarea.Xuetal.(l982)calculatalthedy-naAn…  相似文献   

9.
The thermohaline structure at 4°S, 156°E was analyzed based on CTD data acquired during the TOGA COARE Intensive Observing Period (IOP) from November, 1992 to February, 1993. The ocean responses during two Madden-Julian Oscillation (MJO) events were preliminarily studied based on meteorological field observation. The main water masses at the observation point were Tropical Surface Water, Southern Subtropical Lower Water and Southern Intermediate Water from surface downward. There was good correlation of sea surface temperature with the wind field, and of the surface salinity with wind speed and rainfalls. Both of the two surface variables were also modulated by upwelling caused by westerly winds at the observation point. The isohaline layer was not always shallower than the isothemal layer in this observation and could be considered as the lower limit of the diurnal variation of the isothernal layers in most cases. The existence of large variations of the maximum salinity core is suggested to be related to the meridional motion in that depth. Contribution No. 2264 from the Institute of Oceanology, Chinese Academy of Sciences. This project was supported by NSFC (No. 49176255).  相似文献   

10.
Impact of Kuroshio on the dissolved oxygen in the East China Sea region   总被引:1,自引:0,他引:1  
A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea(ECS)and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen(DO) in spring. Waters were sampled at 10-25 m intervals within 100 m depth, and at 25-500 m beyond 100 m. The depth, temperature, salinity, and density(sigma-t) were measured in situ with a conductivity-temperature-depth(CTD) sensor. DO concentrations were determined on board using traditional Winkler titration method. The results show that in the Kuroshio Current, DO content was the highest in the euphotic layer, then decreased sharply with depth to about 1 000 m, and increased with depth gradually thereafter. While in the ECS continental shelf area, DO content had high values in the coastal surface water and low values in the near-bottom water. In addition, a low-DO zone of f the Changjiang(Yangtze) River estuary was found in spring 2014, and it was formed under the combined influence of many factors, including water stratification, high primary productivity in the euphotic layers, high accumulation/sedimentation of organic matter below the euphotic layers, and mixing/transport of oceanic current waters on the shelf. Most notable among these is the Kuroshio intruded water, an oceanic current water which carried rich dissolved oxygen onto the continental shelf and alleviated the oxygen deficit phenomenon in the ECS, could impact the position, range, and intensity, thus the formation/destruction of the ECS Hypoxia Zone.  相似文献   

11.
Continuous observation of sea water temperature and current was made at Wenchang Station (19°35′N, 112°E) in 2005. The data collected indicate vigorous internal waves of both short periods and tidal and near-inertial periods. The temperature and current time series during 18-30 September were examined to describe the upper ocean internal wave field response to Typhoon Damrey (0518). The strong wind associated with the typhoon, which passed over the sea area about 45 km south of Wenchang Sta- tion on 25 September, deepened the mixed layer depth remarkably. It decreased the mixed layer temperature while increasing the deep layer temperature, and intensified the near-inertial and high-frequency fluctuations of temperature and current. Power spectra of temperature and current time series indicate significant deviations from those obtained by using the deep ocean internal wave models characterized by a power law. The frequency spectra were dominated by three energetic bands: around the inertial frequency (7.75× 10-6 Hz), tidal frequencies (1.010-25 to 2.4×10-5 Hz), and between 1.4×10-4 and 8.3 × 10-4 Hz. Dividing the field data into three phases (before, during and after the typhoon), we found that the typhoon enhanced the kinetic energy in nearly all the frequency bands, es- pecially in the surface water. The passage of Damrey made a major contribution to the horizontal kinetic energy of the total surface current variances. The vertical energy density distribution, with its peak value at the surface, was an indication that the energy in- jected by the strong wind into the surface current could penetrate downward to the thermocline.  相似文献   

12.
1 Introduction Thesub inertialcirculationincoastalembaymentanditsexchangewiththeopenshelfwaterscanhaveimportantenvironmentconsequences .AnexampleofsuchasystemisJervisBay ,asmallsemi closedembay mentlocatedontheEastCoastofAustralia .Thebayisapproximately 15kmlongand 8kmwidewithanareaof 12 4km2 .Theaverageddepthofthebayis 15mandisconnectedtothecontinentalshelfthroughanopeningwhichis 3.75kmwideand 4 0mdeep (Fig.1) .Theadjacentcontinentalshelfgraduallyincreasesitsdepthto 12 0mwithinadistanceo…  相似文献   

13.
The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.  相似文献   

14.
Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.  相似文献   

15.
The seasonal response of surface wind speed to sea surface temperature(SST)change in the Northern Hemisphere was investigated using 10 years(2002-2011)high-resolution satellite observations and reanalysis data.The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation,with more positive correlation is stronger in the cold seasons than in the warm seasons.This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions.The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer.Additionally,the eddy-induced response of surface wind speed is stronger in winter than in summer,although the locations and numbers of mesoscale eddies do not show obvious seasonal features.The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer(MABL),modulated by SST perturbations.In the cold seasons,the stronger positive(negative)SST perturbations are easier to increase(decrease)the MABL height and trigger(suppress)momentum vertical mixing,contributing to the positive correlation between SST and surface wind speed.In comparison,SST perturbations are relatively weak in the warm seasons,resulting in a weak response of surface wind speed to SST changes.This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.  相似文献   

16.
High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area. Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.  相似文献   

17.
A two and a half layer oceanic model of wind-driven, thermodynamical general circulation is appliedto study the interannual oscillation of sea surface temperature (SST) in the South China Sea (SCS). Themodel consists of two active layers: the upper mixed layer (UML) and the seasonal thermocline, with themotionless abyss beneath them. The governing equations which include momentum, continuity and sea.temperature for each active layer, can describe the physics of Boussinseq approximation, reduced gravityand equatorial β-plane. The formulas for the heat flux at the surface and at the interface between twoactive layers are designed on the Haney scheme. The entrainment and detrainment at the bottom of theUML induces vertical transport of mass,momentum and heat, and couples of dynamic andthermodynamic effect.Using leap-frog integrating scheme and the Arakawa-C grid the model is forced bya time-dependent wind anomaly stress pattern obtained from category analysis of COADS. The numerical results indicate that t  相似文献   

18.
The upper mixed layer (UML) depth obtained from temperature is very close to that from density:the maximum is about 15m. This indicates that temperature is a good indicator of mixed layer during measurements. When the surface heat flux is balanced by a cross-shore heat flux, the surface mixed layer depth obtained from the WM model (Weatherly and Martin, 1978),hPRT, is roughly the same as observed. The mixed layer depth calculated from the PWP model (Price, Weller and Pinkel, 1986) is close to the depth obtained from thermistor chain temperature data. The results show that both the WM model and PWP model can provide a good estimate of stratification in the study area during the cruise. The value of log( h/u3) is about 9.5 in the study area, which shows that the study area is strongly stratified in summer. Observations on the northern Portugal shelf reveal high variability in stability, giving rise to semi-diurnal, semi-monthly and diurnal oscillations, and long term variations. The fortnightly oscillatio  相似文献   

19.
To solve the numerical divergence problem of the direct time domain Green function method for the motion simulation of floating bodies with large flare, a time domain hybrid Rankine-Green boundary element method is proposed. In this numerical method, the fluid domain is decomposed by an imaginary control surface, at which the continuous condition should be satisfied. Then the Rankine Green function is adopted in the inner domain. The transient free surface Green function is applied in the outer domain, which is used to find the relationship between the velocity potential and its normal derivative for the inner domain. Besides, the velocity potential at the mean free surface between body surface and control surface is directly solved by the integration scheme. The wave exciting force is computed through the convolution integration with wave elevation, by introducing the impulse response function. Additionally, the nonlinear Froude-Krylov force and hydrostatic force, which is computed under the instantaneous incident wave free surface, are taken into account by the direct pressure integration scheme. The corresponding numerical computer code is developed and first used to compute the hydrodynamic coefficients of the hemisphere, as well as the time history of a ship with large flare; good agreement is obtained with the analytical solutions as well as the available numerical results. Then the hydrodynamic properties of a FPSO are studied. The hydrodynamic coefficients agree well with the results computed by the frequency method; the influence of the time interval and the truncated time is investigated in detail.  相似文献   

20.
A laboratory experiment was conducted inside a wind wave tank to investigate the wave induced turbulence. In this experiment, the wave surface elevation and velocity beneath the water surface were measured simultaneously to investigate the relation between the wave status and wave induced turbulence. The profile of the turbulent dissipation rate and Reynolds stress were calculated using experimental data. The effect of the wave status on turbulence is investigated with regard to the wind wave, swell, and mixed wave conditions. It was depicted that the turbulence decreased with increasing depth from the water surface and that the turbulence that was induced by a wave with larger wavelength and wave height is much stronger for the same wave status. Finally, we observed that the wind wave is more effective in activating the wave induced turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号