首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neodymium concentration, CNd, and isotopic composition, εNd, in seawater have been determined in the water column at five sites in the Barents Sea-Fram Strait area where most of the water exchange between the Arctic Ocean and the North Atlantic takes place. In the main Arctic Ocean inflow branch across the Barents Sea the concentration and isotopic composition (CNd = 15.5 pmol/kg and εNd = −10.8) are similar to those reported for the northeastern Nordic Seas, which is consistent with this region being a source area for the Arctic inflow. Due to the addition of Nd from Svalbard shelf sediments, the CNd in the surface waters above 150 m, in the Fram Strait inflow branch is higher by a factor of 2 and the εNd is shifted to lower values (−11.8).In the stratified Nansen Basin, where cold low salinity water overlies warmer Atlantic water the CNd and εNd do not vary with the vertical temperature-salinity structure but are essentially constant and similar to those of the Atlantic inflow throughout the entire water column, down to 3700 m depth, which indicates that the Nd is to a large extent of Atlantic origin.Compared to the Atlantic inflow water, the Nd in the major Arctic Ocean outflow, the Fram Strait, show higher CNd in the surface waters above 150 m, and a higher εNd (−9.8) throughout the entire water column down to 1300 m depth. Sources for the more radiogenic Nd isotopic composition in deep water of the Fram Strait outflow most likely involve boundary exchange with sediments on the shelf and slope as the water passes along the Canadian archipelago. River water is a possible source in the surface water but it also seems likely that Pacific water Nd, modified by interactions on the shelf, is an important component in the Fram Strait surface outflow. Changes in the relative proportions of inflow of river water and flow of Pacific water through the Arctic Ocean could thus influence the isotopic composition of Nd in the North Atlantic.  相似文献   

2.
Three vertical profiles of seawater concentration and isotopic composition of Nd were determined for the western to central North Pacific Ocean.In the subarctic oceanic region, at depths greater than 500 m, one vertical profile of Nd isotopic composition was indistinguishable from most previously reported profiles from here. The data indicate a rather homogeneous Nd isotopic composition in the subarctic oceanic region at middle to deep depths (>500 m). Two stations in the subtropical oceanic region exhibited similar Nd isotopic composition profiles to those previously reported. The maxima εNd values at depths of 800-1000 m (εNd = −3.4 to −2.7), which correspond to the North Pacific Intermediate Water (NPIW), are found at both subtropical stations. This implies a ubiquitous distribution of NPIW showing a radiogenic εNd value in the North Pacific. The subsurface minimum at a depth of ∼200 m, which indicates the penetration of the North Pacific Tropical Water (NPTW) with an unradiogenic Nd isotopic signal, was observed at one station in the western Pacific. This station had much lower εNd than the central station at depths around 5000 m, suggesting the greater prominence of Antarctic Bottom Water (AABW) in the western subtropical Pacific than in the central to eastern subtropical Pacific.Results of a model calculation assuming boundary exchange indicate that the Hawaiian Islands play an important role in supplying radiogenic Nd to the central Pacific, similar to some continental margins.We show that Nd isotopic composition is a versatile tracer for ocean circulation and the geochemical cycle of Nd in the North Pacific. Further studies on the distribution of Nd isotopic composition in the Pacific Ocean, including the Southern Pacific, will better elucidate the circulation and geochemical cycle of Nd in the Pacific.  相似文献   

3.
黄土高原黄土物源区的同位素证据   总被引:2,自引:0,他引:2       下载免费PDF全文
系统采集了黄土高原马兰黄土、河西走廊和青藏高原东北部黄土、河床沙和湖泥样品。用酸淋洗去除方解石后,黄土高原马兰黄土εNd(0)值从-9.2到-11.3,87Sr/86Sr比值从0.71784到0.71944,都落在同位素B区内,与青藏高原东北部、巴丹吉林沙漠和腾格里沙漠的值一致。黄土高原马兰黄土白云石的δ13C值从1.2‰到1.5‰,与青藏高原东北部和河西走廊黄土,巴丹吉林沙漠的白云石的值类似。这些表明青藏高原东北部、巴丹吉林沙漠和腾格里沙漠可能是黄土高原黄土的源区,从而排除了其他沙漠(古尔班通古特沙漠、塔克拉玛干沙漠、毛乌素沙漠、库布齐沙漠、浑善达克沙地、科尔沁沙地和呼伦贝尔沙地)作为黄土物源区的可能性。同位素研究结果和野外调查进一步揭示,黄土高原黄土、巴丹吉林沙漠和腾格里沙漠物质可能最终都是来源于青藏高原东北部。  相似文献   

4.
The distribution of neodymium isotopes in Arctic Ocean basins   总被引:1,自引:0,他引:1  
Nd concentration and isotope data have been obtained for the Canada, Amundsen, and Makarov Basins of the Arctic Ocean. A pattern of high Nd concentrations (up to 58 pM) at shallow depths is seen throughout the Arctic, and is distinct from that generally seen in other oceans where surface waters are relatively depleted. A range of isotopic variations across the Arctic and within individual depth profiles reflects the different sources of waters. The dominant source of water, and so Nd, is the Atlantic Ocean, with lesser contributions from the Pacific and Arctic Rivers. Radiogenic isotope Nd signatures (up to εNd = −6.5) can be traced in Pacific water flowing into the Canada Basin. Waters from rivers draining older terrains provide very unradiogenic Nd (down to εNd = −14.2) that can be traced in surface waters across much of the Eurasian Basin. A distinct feature of the Arctic is the general influence of the shelves on the Nd concentrations of waters flowing into the basins, either from the Pacific across the Chukchi Sea, or from across the extensive Siberian shelves. Water-shelf interaction results in an increase in Nd concentration without significant changes in salinity in essentially all waters in the Arctic, through processes that are not yet well understood. In estuarine regions other processes modify the Nd signal of freshwater components supplied into the Arctic Basin, and possibly also contribute to sedimentary Nd that may be subsequently involved in sediment-water interactions. Mixing relationships indicate that in estuaries, Nd is removed from major river waters to different degrees. Deep waters in the Arctic are higher in Nd than the inflowing Atlantic waters, apparently through enrichments of waters on the shelves that are involved in ventilating the deep basins. These enrichments generally have not resulted in major shifts in the isotopic compositions of the deep waters in the Makarov Basin (εNd ∼ −10.5), but have created distinctive Nd isotope signatures that were found near the margin of the Canada Basin (with εNd ∼ −9.0). The deep waters of the Amundsen Basin are also distinct from the Atlantic waters (with εNd = −12.3), indicating that there has been limited inflow from the adjacent Makarov Basin through the Lomonosov Ridge.  相似文献   

5.
Geochemical and isotopic studies of aeolian sediments in China   总被引:5,自引:0,他引:5  
The Sr and Nd isotopic, rare earth element (REE) and major element compositions, together with mineral and grain‐size proportions, are reported for aeolian loess deposits and desert sands from several Chinese localities. The study was carried out in order to examine regional variations in the isotopic and geochemical features of these aeolian sediments, and to constrain the provenance of Chinese loess. Samples include loesses from the Tarim and Junggar basins and desert sands from the Taklimakan desert in north‐west China, loess from the Ordos area and desert sands from the Tengger and Mu‐us deserts in north‐central China, as well as loess and desert sands from the Naiman area, north‐east China. REE distributions show minimal variation among the Chinese loess deposits, whereas those for the desert sands show regional variations. New isotopic data document a latitudinal variation in Sr and Nd isotopic features for the loesses and desert sands. The Naiman and Junggar loesses have distinctly lower 87Sr/86Sr ratios and higher εNd(0) values than the loesses from the Tarim Basin, the Ordos area and the Loess Plateau. Among the desert sands, the Naiman samples have higher εNd(0) values than the Taklimakan, Tengger and Mu‐us samples. Isotopic data suggest that loesses of the Loess Plateau were supplied from the Tarim Basin loesses and Taklimakan Desert sand, and that the Naiman loesses were supplied from the Junggar Basin loesses. The latitudinal variation in the loesses and desert sands may be partly explained by isotopic variations reported previously for moraines from the Tianshan and west Kunlun Mountains, which are possible sources for the loesses and desert sands. These inferences on the provenance of the loesses and desert sands are consistent with the dust transport pattern over East Asia.  相似文献   

6.
Heterogeneous magnesium isotopic composition of the upper continental crust   总被引:3,自引:0,他引:3  
High-precision Mg isotopic data are reported for ∼100 well-characterized samples (granites, loess, shales and upper crustal composites) that were previously used to estimate the upper continental crust composition. Magnesium isotopic compositions display limited variation in eight I-type granites from southeastern Australia (δ26Mg = −0.25 to −0.15) and in 15 granitoid composites from eastern China (δ26Mg = −0.35 to −0.16) and do not correlate with SiO2 contents, indicating the absence of significant Mg isotope fractionation during differentiation of granitic magma. Similarly, the two S-type granites, which represent the two end-members of the S-type granite spectrum from southeastern Australia, have Mg isotopic composition (δ26Mg = −0.23 and −0.14) within the range of their potential source rocks (δ26Mg = −0.20 and +0.15) and I-type granites, suggesting that Mg isotope fractionation during crustal anatexis is also insignificant. By contrast, δ26Mg varies significantly in 19 A-type granites from northeastern China (−0.28 to +0.34) and may reflect source heterogeneity.Compared to I-type and S-type granites, sedimentary rocks have highly heterogeneous and, in most cases, heavier Mg isotopic compositions, with δ26Mg ranging from −0.32 to +0.05 in nine loess from New Zealand and the USA, from −0.27 to +0.49 in 20 post-Archean Australian shales (PAAS), and from −0.52 to +0.92 in 20 sedimentary composites from eastern China. With increasing chemical weathering, as measured by the chemical index of alternation (CIA), δ26Mg values show a larger dispersion in shales than loess. Furthermore, δ26Mg correlates negatively with δ7Li in loess. These characteristics suggest that chemical weathering significantly fractionates Mg isotopes and plays an important role in producing the highly variable Mg isotopic composition of sedimentary rocks.Based on the estimated proportions of major rock units within the upper continental crust and their average MgO contents, a weighted average δ26Mg value of −0.22 is derived for the average upper continental crust. Our studies indicate that Mg isotopic composition of the upper crust is, on average, mantle-like but highly heterogeneous, with δ26Mg ranging from −0.52 to +0.92. Such large isotopic variation mainly results from chemical weathering, during which light Mg isotopes are lost to the hydrosphere, leaving weathered products (e.g., sedimentary rocks) with heavy Mg isotopes.  相似文献   

7.
The Saurashtra region in the northwestern Deccan continental flood basalt province (India) is notable for compositionally diverse volcano-plutonic complexes and abundant rhyolites and granophyres. A lava flow sequence of rhyolite-pitchstone-basaltic andesite is exposed in Osham Hill in western Saurashtra. The Osham silicic lavas are Ba-poor and with intermediate Zr contents compared to other Deccan rhyolites. The Osham silicic lavas are enriched in the light rare earth elements, and have εNd (t = 65 Ma) values between −3.1 and −6.5 and initial 87Sr/86Sr ratios of 0.70709-0.70927. The Osham basaltic andesites have initial εNd values between +2.2 and −1.3, and initial 87Sr/86Sr ratios of 0.70729-0.70887. Large-ion-lithophile element concentrations and Sr isotopic ratios may have been affected somewhat by weathering; notably, the Sr isotopic ratios of the silicic and mafic rocks overlap. However, the Nd isotopic data indicate that the silicic lavas are significantly more contaminated by continental lithosphere than the mafic lavas. We suggest that the Osham basaltic andesites were derived by olivine gabbro fractionation from low-Ti picritic rocks of the type found throughout Saurashtra. The isotopic compositions, and the similar Al2O3 contents of the Osham silicic and mafic lavas, rule out an origin of the silicic lavas by fractional crystallization of mafic liquids, with or without crustal assimilation. As previously proposed for some Icelandic rhyolites, and supported here by MELTS modelling, the Osham silicic lavas may have been derived by partial melting of hot mafic intrusions emplaced at various crustal depths, due to heating by repetitively injected basalts. The absence of mixing or mingling between the rhyolitic and basaltic andesite lavas of Osham Hill suggests that they reached the surface via separate pathways.  相似文献   

8.
Geochemical methods (major elements and Sr, Nd isotopes) have been used to (1) characterize Lake Le Bourget sediments in the French Alps, (2) identify the current sources of the clastic sediments and estimate the source variability over the last 600 years. Major element results indicate that Lake Le Bourget sediments consist of 45% clastic component and 55% endogenic calcite. In addition, several individual flood levels have been identified during the Little Ice Age (LIA) on the basis of their higher clastic content (> 70%).Potential sources of Lake Le Bourget clastic sediments have been investigated from Sr and Nd isotope compositions. The sediments from the Sierroz River and Leysse River which are mainly derived from the Mesozoic Calcareous Massifs are characterised by lower 87Sr/86Sr ratios and slightly lower ?Nd(0) ratios than the Arve River sediments which are derived from the Palaeozoic Mont-Blanc External Crystalline Massifs. The Rhône River appears to have been the main source of clastic sediments into the lake for the last 600 years, as evidenced by a similar Sr and Nd isotopic compositions analyzed in core B16 sediments (87Sr/86Sr = 0.719, ?Nd(0) = − 10) and in the sediments of the Rhône River (87Sr/86Sr = 0.719, ?Nd(0) = − 9.6).The isotopic signatures of flood events and background samples from core B16 in Lake Le Bourget are also similar. This indicates that prior to ∼ 1800, the inputs into the lake have remained relatively homogeneous with the proportion of clastic component mainly being a function of the palaeohydrology of the Rhone River. Early human modification (deforestation and agriculture) of the lake catchment before the 1800s appears to have had little influence on the source of clastic sediments.  相似文献   

9.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

10.
Barium isotopic compositions of chemical leachates from six carbonaceous chondrites, Orgueil (CI), Mighei (CM2), Murray (CM2), Efremovka (CV3), Kainsaz (CO3), and Karoonda (CK4), were determined using thermal ionization mass spectrometry in order to assess the chemical evolution in the early solar system.The Ba isotopic data from most of the leachates show variable 135Ba excesses correlated with 137Ba excesses, suggesting the presence and heterogeneity of additional nucleosynthetic components for s- and r-processes in the solar system. The isotopic deviations observed in this study were generally small (−1 < ε < +1) except in the case of the acid residues of CI and CM meteorites. Large deviations of 135Ba (ε = −13.5 to −5.0) and 137Ba (ε = −6.2∼−1.2) observed in the acid residues from one CI and two CM meteorites show significant evidence for the enrichment of s-process isotopes derived from presolar grains. Two models were proposed to estimate the 135Cs isotopic abundances by subtraction of the s- and r-isotopic components from the total Ba isotopic abundances in the three CM meteorites, Mighei, Murchison (measured in a previous study), and Murray. The data points show individual linear trends between 135Cs/136Ba ratios and 135Ba isotopic deviations for the three samples. Considering the different trends observed in the three CM meteorites, the Ba isotopic composition of the CM meteorite parent body was heterogeneous at its formation. Chronological information is unclear in the data for Murchison and Murray because of large analytical uncertainties imposed by error propagation. Only the Mighei meteorite data indicate the possible existence of presently extinct 135Cs (135Cs/133Cs = (2.7 ± 1.6) × 10−4) in the early solar system. Another explanation of the data for the three CM meteorite is mixing of at least three components with different Ba isotopic compositions, although this is model-dependent.  相似文献   

11.
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world’s major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them.Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, εHf = 1.55 × εNd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (εHf = 1.36 × εNd + 2.89; Vervoort et al., 1999) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array.In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.  相似文献   

12.
New U-Pb perovskite ages reveal that diamondiferous ultramafic lamprophyre magmas erupted through the Archean crust of northern Labrador and Quebec (eastern Canada) between ca. 610 and 565 Ma, a period of strong rifting activity throughout contiguous Laurentia and Baltica. The observed Torngat carbonate-rich aillikite/carbonatite and carbonate-poor mela-aillikite dyke varieties show a large spread in Sr-Nd-Hf-Pb isotope ratios with pronounced correlations between isotope systems. An isotopically depleted component is identified solely within aillikites (87Sr/86Sri = 0.70323-0.70377; εNdi = +1.2-+1.8; εHfi = +1.4-+3.5; 206Pb/204Pbi = 18.2-18.5), whereas some aillikites and all mela-aillikites range to more enriched isotope signatures (87Sr/86Sri = 0.70388-0.70523; εNdi = −0.5 to −3.9; εHfi = −0.6 to −6.0; 206Pb/204Pbi = 17.8-18.2). These contrasting isotopic characteristics of aillikites/carbonatites and mela-aillikites, along with subtle differences in their modal carbonate, SiO2, Al2O3, Na2O, Cs-Rb, and Zr-Hf contents, are consistent with two distinctive metasomatic assemblages of different age in the mantle magma source region.Integration of petrologic, geochemical, and isotopic information leads us to propose that the isotopically enriched component originated from a reduced phlogopite-richterite-Ti-oxide dominated source assemblage that is reminiscent of MARID suite xenoliths. In contrast, the isotopically depleted component was derived from a more oxidized phlogopite-carbonate dominated source assemblage. We argue that low-degree CO2-rich potassic silicate melts from the convective upper mantle were preferentially channelled into an older, pre-existing MARID-type vein network at the base of the North Atlantic craton lithosphere, where they froze to form new phlogopite-carbonate dominated veins. Continued stretching and thinning of the cratonic lithosphere during the Late Neoproterozoic remobilized the carbonate-rich vein material and induced volatile-fluxed fusion of the MARID-type veins and the cold peridotite substrate. Isotopic modelling suggests that only 5-12% trace element contribution from such geochemically extreme MARID-type material is required to produce the observed compositional shift from the isotopically most depleted aillikites/carbonatites towards enriched mela-aillikites.We conclude that cold cratonic mantle lithosphere can host several generations of contrasting vein assemblages, and that each may have formed during past tectonic and magmatic events under distinctively different physicochemical conditions. Although cratonic MARID-type and carbonate-bearing veins in peridotite can be the respective sources for lamproite and carbonatite magmas when present as the sole metasome, their concomitant fusion in a complex source region may give rise to a whole new variety of deep volatile-rich magmas and we suggest that orangeites (formerly Group 2 kimberlites), kamafugites, and certain types of ultramafic lamprophyre are formed in this manner.  相似文献   

13.
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of εpor suggests that values of εpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.  相似文献   

14.
The isotopic compositions of Sm and Gd in lunar regolith samples from the Apollo 16 and 17 deep drill stems showed clear isotopic shifts in 150Sm /149Sm (ε = +124 to +191 for A-16, and +37 to +111 for A-17) and 158Gd/157Gd (ε = +107 to +169 for A-16, and +31 to +84 for A-17) corresponding to neutron fluences of (5.68-9.03) × 1016 n cm−2 for A-16 and (1.85-5.04) × 1016 n cm−2 for A-17. The depth profiles of neutron fluences suggest that the regoliths at both sites were due to incomplete mixing of three different slabs which experienced individual two-stage irradiation before and after deposition of the upper slabs. The variations in REE compositions provide chemical evidence for incompletely vertical mixing of regoliths especially at upper layers of the two sites. The thermal neutron energy index estimated from the combination of Sm and Gd isotopic shifts, defined as εSm/εGd, shows a small variation (0.61-0.64) in the A-16 core except for the surface layer. On the other hand, a large variation in εSm/εGd = 0.67 to 0.83 in the A-17 core may result from complicated history such as two-stage irradiation and incomplete mixing during the gardening processes. Isotopic enrichments of 152Gd and 154Gd correlated with Eu/Gd elemental abundances and neutron fluences were also observed in almost all of 15 samples, showing evidence of neutron-capture from 151Eu and 153Eu, respectively.  相似文献   

15.
We have carried out a comparative Rb-Sr, Sm-Nd and Lu-Hf isotopic study of a progressively deformed hercynian leucogranite from the French Massif Central, belonging to the La Marche ductile shear zone, in order to investigate the respective perturbation of these geochronometers with fluid induced deformation. The one-meter wide outcrop presents a strongly deformed and mylonitized zone at the center, and an asymmetric deformation pattern with a higher deformation gradient on the northern side of the zone. Ten samples have been carefully collected every 10 cm North and South away from the strongest deformed mylonitic zone. They have been analyzed for a complete major, trace element data set, oxygen isotopes, Rb-Sr, Sm-Nd and Lu-Hf isotopic systematics.We show that most of major and trace elements except SiO2, alkaline elements (K2O, Rb), and some metal transition elements (Cu), are progressively depleted with increasing deformation. This depletion includes REE + Y, but also HFS elements (Ti, Hf, Zr, Nb) which are commonly considered as immobile elements during upper level processes. Variations in elemental ratios with deformation, e.g. decrease in LREE/MREE- HREE, Nd/Hf, Th/Sr, increase in Rb/Sr, U/Th and constant Sr/Nd, lead to propose the following order of element mobility: U ? Th > Sr = Nd ? Hf + HREE. We conclude in agreement with previous tectonic and metallogenic studies that trace element patterns across the shear zone result from circulation of oxidizing F-rich hydrothermal fluids associated with deformation. A temperature of the fluid of 470-480 °C can be deduced from the δ18O equilibrium between quartz-muscovite pairs.Elemental fractionation induces perturbation of the Rb-Sr geochronometer. The well-defined 87Rb/86Sr-87Sr/86Sr correlation gives an apparent age of 294 ± 19 Ma, slightly younger than the 323 ± 4 Ma age of leucogranites in this area. This apparent age is interpreted as dating event of intense deformation and fluid circulation associated with mass transfer, and exhumation of the ductile crust shortly after the leucogranite emplacement. Sm-Nd and Lu-Hf isochron-type diagrams do not define any correlation, because of the low fractionated Sm/Nd and Lu/Hf ratios. Isotopic data demonstrate that only the Lu-Hf geochronometer system is not affected by fluid circulation and gives reliable TDM age (1.29 ± 0.03 Ga) and εHf signatures. By contrast, the Sm-Nd geochronometer system gives erroneous old TDM ages of 2.84-4 Ga. There is no positive εNd-εHf correlation, because of decreasing εNd values with deformation at constant εHf values. However, εNd-εHf values remain in the broad εNd-εHf terrestrial array, which strongly indicates that fluid-induced fractionation can contribute to the width of the terrestrial array. The strong εHf negative values of the leucogranite are similar to metasedimentary granulitic xenoliths from the French Massif Central and confirm the generation of the leucogranite by several episodes of reworking of the lower crust.  相似文献   

16.
The postulated difference in W isotopic composition of the Earth’s core of ∼2 εW units, compared to the bulk silicate earth (BSE) has previously been used to search for evidence of core-mantle interaction (CMI) in ocean island basalts (OIB). The absence of W isotope anomalies has thus been taken as evidence that CMI does not occur. However, the addition of subducted sediment with high W to the sources of OIB could obscure a core signature. This possibility brings into question the utility of W isotopes as tracers for CMI. To accurately consider the effects of sediment addition to mantle sources of OIB with respect to W requires improved constraints on the abundances of W in subducting sediment. Here, we present high-precision W abundance data (and other HFSE) for a suite of sediments from the Banda subduction regime in East Indonesia. Subducting East Indonesian sediments have trace element concentrations that resemble those of average upper continental crust (UCC), making these sediments valuable to consider as typical of subducted sediments. Average W abundances of 2.1 ppm, corrected for carbon content coupled with current models of 0.5% core addition and 1% sediment addition to EM1 or HIMU plume, suggest that a model hybrid source should exhibit values of εW = −0.24 with ∼25 ppb W. Prior studies have not reported such low W isotopic compositions or high estimated W concentrations present in the sources of either Hawaiian or French Polynesian lavas, so such large additions of core material to these plume sources seems unlikely. Given these constraints, core contributions to these source, if present, can be no more than ∼0.1%.  相似文献   

17.
Cadmium isotopic composition in the ocean   总被引:1,自引:0,他引:1  
The oceanic cycle of cadmium is still poorly understood, despite its importance for phytoplankton growth and paleoceanographic applications. As for other elements that are biologically recycled, variations in isotopic composition may bring unique insights. This article presents (i) a protocol for the measurement of cadmium isotopic composition (Cd IC) in seawater and in phytoplankton cells; (ii) the first Cd IC data in seawater, from two full depth stations, in the northwest Pacific and the northwest Mediterranean Sea; (iii) the first Cd IC data in phytoplankton cells, cultured in vitro. The Cd IC variation range in seawater found at these stations is not greater than 1.5 εCd/amu units, only slightly larger than the mean uncertainty of measurement (0.8 εCd/amu). Nevertheless, systematic variations of the Cd IC and concentration in the upper 300 m of the northwest Pacific suggest the occurrence of Cd isotopic fractionation by phytoplankton uptake, with a fractionation factor of 1.6 ± 1.4 εCd/amu units. This result is supported by the culture experiment data suggesting that freshwater phytoplankton (Chlamydomonas reinhardtii and Chlorella sp.) preferentially take up light Cd isotopes, with a fractionation factor of 3.4 ± 1.4 εCd/amu units. Systematic variations of the Cd IC and hydrographic data between 300 and 700 m in the northwest Pacific have been tentatively attributed to the mixing of the mesothermal (temperature maximum) water (εCd/amu = −0.9 ± 0.8) with the North Pacific Intermediate Water (εCd/amu = 0.5 ± 0.8). In contrast, no significant Cd IC variation is found in the northwest Mediterranean Sea. This observation was attributed to the small surface Cd depletion by phytoplankton uptake and the similar Cd IC of the different water masses found at this site. Overall, these data suggest that (i) phytoplankton uptake fractionates Cd isotopic composition to a measurable degree (fractionation factors of 1.6 and 3.4 εCd/amu units, for the in situ and culture experiment data, respectively), (ii) an open ocean profile of Cd IC shows upper water column variations consistent with preferential uptake and regeneration of light Cd isotopes, and (iii) different water masses may have different Cd IC. This isotopic system could therefore provide information on phytoplankton Cd uptake and on water mass trajectories and mixing in some areas of the ocean. However, the very small Cd IC variations found in this study indicate that applications of Cd isotopic composition to reveal aspects of the present or past Cd oceanic cycle will be very challenging and may require further analytical improvements. Better precision could possibly be obtained with larger seawater samples, a better chemical separation of tin and a more accurate mass bias correction through the use of the double spiking technique.  相似文献   

18.
Here we first present samarium (Sm)–neodymium (Nd) isotopic data for the ∼2.5 Ga Wangjiazhuang BIF and associated lithologies from the Wutai greenstone belt (WGB) in the North China Craton. Previous geochemical data of the BIF indicate that there are three decoupled end members controlling REE compositions: high-T hydrothermal fluids, ambient seawater and terrigenous contaminants. Clastic meta-sediment samples were collected for major and trace elements studies in an attempt to well constrain the nature of detrital components of the BIF. Fractionated light rare earth elements patterns and mild negative Eu anomalies in the majority of these meta-sedimentary samples point toward felsic source rocks. Moreover, the relatively low Th/Sc ratios and positive εNd(t) values are similar to those of the ∼2.5 Ga granitoids, TTG gneisses and felsic volcanics in the WGB, further indicating that they are derived from less differentiated terranes. Low Chemical Index of Weathering (CIW) values and features in the A-CN-K diagrams for these meta-sediments imply a low degree of source weathering. Sm–Nd isotopes of the chemically pure BIF samples are characterized by negative εNd(t) values, whereas Al-rich BIF samples possess consistently positive εNd(t) features. Significantly, the associated supracrustal rocks in the study area have positive εNd(t) values. Taken together, these isotopic data also point to three REE sources controlling the back-arc basin depositional environment of the BIF, the first being seafloor-vented hydrothermal fluids (εNd(t) < −2.5) derived from interaction with the underlying old continental crust, the second being ambient seawater which reached its composition by erosion of parts of the depleted landmass (likely the arc) (εNd(t) > 0), the third being syndepositional detritus that received their features by weathering of a nearby depleted source (likely the arc) (εNd(t) > 0).  相似文献   

19.
Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.  相似文献   

20.
Several I- and A-type granite, syenite plutons and spatially associated, giant Fe-Ti-V deposit-bearing mafic-ultramafic layered intrusions occur in the Pan-Xi (Panzhihua-Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U-Pb ages and Hf-Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0-259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1-259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic-ultramafic intrusions are generally more isotopically enriched (lower εNd and εHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive εHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallow-level magma chambers differentiated to form mafic-ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative εNd(t) [−6.3 to −7.5] and εHf(t) [−1.3 to −6.7] values, with the Nd model ages () of 1.63−1.67 Ga and Hf model ages () of 1.56−1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号